摘要
水平钻井与水力压裂等原位开采技术的应用引发了世界页岩油气开采的热潮,但由此可能造成的地下水污染风险导致公众的强烈担忧。对页岩油气开发造成地下水污染的主要途径与风险评价方法进行了综述。在已有研究的基础上,首先介绍了页岩油气开发造成地下水污染的特征污染物、污染途径与迁移驱动力,然后综述了页岩油气开发影响下的地下水污染风险主要评价方法,指出了指数叠加法、过程模拟法和统计方法在页岩油气开发场景中的研究现状与发展方向,最后对页岩油气开发影响下的地下水污染评价方法的后续研究方向进行了展望。
页岩油气是一类赋存于富有机质泥页岩及其夹层中的非常规油气资源。随着水平钻井与水力压裂技术的应用,页岩油气资源的大规模商业化开发在经济上变得可行,但由此可能造成的地下水污染风险逐渐引起人们的担
地下水污染风险的定义可以追溯至20世纪60年代法国学者Margat提出的地下水脆弱性概
页岩油气开发影响下的地下水污染风险评价研究主要在2010年后展开,延续了传统地下水污染研究对风险的内涵解释与主要评价方法。传统地下水污染研究通常关注由地表污染行为导致的浅层地下水污染风险,如经典指标模型DRASTI
本文首先对页岩油气开发造成地下水污染的特征污染物、污染途径与迁移驱动力进行了介绍,然后综述了页岩油气开发影响下的地下水污染风险主要评价方法,讨论了指数叠加法、过程模拟法和统计方法在页岩油气开发场景中的研究现状与发展方向,最后展望了后续研究方向。
污染过程识别是风险评价的基础。页岩油气全周期开发过程主要包括场地预处理、钻井、压裂与采油采气等阶段。深部地层开发作业激发的污染路径与迁移驱动力以及管理不当、施工缺陷与开发事故等人为失误,均为压裂液、产出水等特征污染物致污地下水提供了可能。
特征污染物分为气相、液相与固相污染物。气相污染物主要指开发过程中产生的游离烃类气体,以甲烷为主,可通过裂缝、断层及泄漏油气井等途径进入地下水,并引发如盐碱化等水质变
页岩油气开发影响下的地下水污染途径如

图1 页岩油气开发影响下的地下水污染途径
Fig.1 Groundwater contamination pathways in shale oil and gas development
污染物原位迁移途径的形成是由于储层与含水层间存在水力连续性,即深层污染物向含水层迁移的通道。一般来说,如果岩层中没有薄弱处,缺乏能使污染物快速扩散的优先路径,污染物长距离的纵向迁移就被认为是不可能
(1)地层构造运动、地下水溶蚀作用等自然过程均可导致岩层出现薄弱处,形成断层、裂缝和洞穴等。水力压裂作业及其引发的微型地震可能激活封闭的自然裂缝和断层,为油气和其他污染物的向上迁移创造了通
(2)水力裂缝结合自然路径(断层等)形成长距离通道。水力压裂作业将诱导裂缝产生并可能连通含水
(3)井结构失效所形成的低阻力通道。在施工缺陷、井内压力过高、压裂诱发轻型地震等影响下,井的完整性可能遭到破坏,形成套管泄漏或环空泄
地层深部流体密度高且垂向水头梯度小,向上迁移较为困难。然而,储层增产技术造成井下压力或温度的变化可以提供额外的驱动
指数叠加法是最常用的评价方法。将污染危害与损害因素定性或半定量化为指标,为不同的指标分配权重并评分,最后将这些指标评分相叠加以提供可表征地下水污染风险的指数。指数叠加法评价流程如

图2 指数叠加法评价流
Fig.2 Process of index-based metho
页岩油气开发影响下地下水污染途径的双向性特征决定了风险评价不应局限于包气带‒含水层系统,应纳入深部地层中污染物迁移的水文地质与驱动力因素,即包含地质背景、岩石序列的岩石学和流变学性质、预先存在的裂缝和断层网络、地层压力属性以及污染源和地下水受体之间的距离等参数。
(1)污染源(页岩储层)与含水层的垂直分离。“垂直分离”术语当前并没有公认的定义,一般情况下,通常描述含水层底部与页岩储层顶部的垂直距
(2)裂缝与断层网络。水力裂缝与断层可能为污染物向上迁移提供了一个低阻力通道(如
同时,页岩油气开发技术特征指标,如油气井完整性、特征污染物管理与排放等都应纳入评价。
页岩油气开发导致的地表污染被认为是浅层地下水致污最主要的原因。此类问题中,页岩油气开发影响下的地下水污染评价研究采用由地表至地下的评价视角,依托经典评价模型如DRASTIC、OCP展开。刘兆
页岩油气开发中地下水原位污染与深层地下水面临的威胁亦需受到关注。Wang
对于页岩油气开发中复杂且多变的地下水污染问题,构建一种泛适用的风险评价工具十分重要。Veiguela
随着对页岩油气开发影响下的地下水污染途径的深入理解,相关研究已逐渐偏向地下水原位污染评价,深层地层水文地质属性与页岩油气提取技术特征逐步受到关注,由下至上的评价视角受到重视。目前,多数研究以建立固定参数的评价模型为主,这一定程度上受传统评价思路的影响(如经典评价模型DRASTIC),因此限制了评价方案的可转用性。Veiguela
指标叠加法本质上是主观定性的,普遍缺乏评价结果的验证过程,其评价的有效性常常受到质疑。结合指标模型与物理模型的混合方法能够提升评价结果的有效
过程模拟法是一类通过数值模型或解析模型完成对污染物迁移过程中对流、扩散、吸附、降解、衰变等的求解,实现潜在污染物时空分布的预测,并表征地下水污染风险程度的方法。相关研究通常围绕由上至下的评价视角,假设已知污染源位置、泄漏属性并建立理想传输模拟域条件,模拟污染物从地表污染源至含水层的正向迁移过程,量化污染物的迁移路径、迁移时间与浓度水平,并与预设阈值相比较,进而表征地下水污染风险程
捕获概率(CP)定义为某一地点的一团水在规定时间内抵达受体的概

图3 2种场景下水井的概率捕获区平面示意
Fig.3 Capture probability plume for a drinking water well in plan view under two scenario
为了权衡大尺度模拟中面临的过程复杂性、空间分辨率与计算能力之间的矛盾,一类通过指标参数映射模拟信息的方法被提出。Rosales-Ramirez
元模型法集成了物理建模与机器学习的思想,机器学习模型从物理模型中学习输入‒输出的功能关系。该类方法从物理模型中强化科学理论,并保留数据驱动的机器学习模型的计算效率与可伸缩
目前,相关研究集中于探讨页岩油气开发地表污染行为对地下水的影响。地下水污染风险程度的判别标准主要有2种:①污染物抵达地下水面的可能(迁移时间与浓度水平
过程模拟法的缺点在于数据可用性有限以及需处理问题的复杂性与不确定性。基于稳态流动与理想均匀介质假定,采用指标参数映射物理过程(如DF参
近年来,鉴于页岩油气开发的规模性,大空间尺度模拟研究备受关注,主要研究思路有:①在大尺度空间中以连续的网格逐网格进行分
页岩油气开发影响下的地下水原位污染风险评价仍待进一步研究。迄今为止,在页岩油气开发场景下的原位建模研究集中于压裂液与地层盐水从深层目标页岩向浅层含水层的垂直迁移上,重在基于不同的假设情景,对污染物可能的传输机制进行阐明,并明确其中重要参数的影响(敏感性分析
在计算机技术的推动下,统计方法开始被用于地下水污染风险评价研究,从概率角度分析并解释数据,处理实测数据的不确定性,从而提供了一种评价和预测污染风险的有效方
模糊逻辑与模糊集理论允许使用多类型信息(如语言数据、专家意见和概率数据)评价风险,从而量化由于实测数据缺乏而被忽略的污染路径。Milton-Thompson
机器学习的主要目标是使计算机能够从数据中学习,并通过这种学习进行预测或决策。机器学习模型具备较高的计算效率与可伸缩性,但作为数据驱动方法,其所需的大量数据可能是昂贵且难以获取的。元模型法采用物理模型生成大量输出数据,并使用这些数据训练机器学习模型,有效克服了这一挑战,更多细节可见2.2.3
目前,在页岩油气开发影响下的地下水污染风险评价研究仍有很大空间探索统计方法的潜力,回归模型、贝叶斯方法与人工智能模型(模糊逻辑、机器学习等)均可为复杂耦合数据分析问题提供可靠的见解。统计方法本质是数据密集型的,同样强调了页岩油气行业监测体系与全面数据库构建的急迫需求。
(1)数据的可用性和质量对页岩油气开发影响下的地下水污染风险评价至关重要,因此需要构建全面的页岩油气行业监测体系和数据库,不仅包括页岩地层数据、油气井结构与损伤、水力裂缝性质、开发作业工序等信息,还应包含环境基线数据,以更好地评价页岩油气开发活动对地下水的污染风险。
(2)指标叠加法特别适用于数据有限与需要快速评价的情况。这类方法本质上是主观定性的,其评价的准确性遭到质疑,而且可能难以捕捉和描述复杂地下水系统。在评价中纳入一定的定量验证过程,如结合指标法与物理模型,已被证明能够提升评价结果的可靠性。动态可迭代评价工具为进一步描述页岩油气开发影响下的地下水污染复杂问题提供了可能。这类评价工具仍需进一步发展,如结合GIS以提升其在不同场景中的适用性与可靠性。
(3)过程模拟法是典型的定量方法,提供了污染物传输的过程信息,并有助于资源和水源的保护。近期研究提出的捕获概率法、指标映射法和元模型法为应对过程模拟法面临的数据可用性挑战与大空间尺度应用挑战提出了新的思路。前者的关键仍在于全面、公开数据库的建设,后者的关键在于对空间复杂性的合理考虑,随机过程法与GIS或许能够提供进一步的见解。此外,仍需加强过程模拟法在页岩油气开发地下水原位污染问题中的研究,尚缺乏足够的实例验证其在实地评价研究中的适用性。
(4)页岩油气开发影响下地下水污染风险评价的多方法联合应用研究仍存在欠缺。一类组合评价方法(如指标叠加‒过程模拟、指标叠加‒过程模拟‒统计方法等)可提升评价结果可靠性。在此基础上,进一步探索评价方法同GIS、地下环境监测技术与环境基线技术等的兼容性,以提供进一步的见解。
作者贡献声明
张宏程:搭建论文逻辑框架,查找和筛选文献,整理并提炼关键内容与创新点,撰写初稿,完成后续修改工作。
代朝猛:制定论文整体思路,对论文结构提供方向性指导,全文审阅。
游学极:对论文内容与结构进行完善和优化。
李 质:对论文内容和结构提出建设性建议,优化论文整体架构。
李继香:对论文提出指导性建议。
张亚雷:对论文提出指导性建议。
参考文献
VIDIC R D, BRANTLEY S L, VANDENBOSSCHE J M, et al. Impact of shale gas development on regional water quality[J]. Science, 2013, 340(6134): 1235009. [百度学术]
LEFEBVRE R. Mechanisms leading to potential impacts of shale gas development on groundwater quality[J]. Wiley Interdisciplinary Reviews: Water, 2017, 4(1): e1188. [百度学术]
MASSONE H E, BARILARI A. Groundwater pollution: a discussion about vulnerability, hazard and risk assessment[J]. Hydrogeology Journal, 2020, 28(2): 463. [百度学术]
MARGAT J. Vulnerabilite des nappes d’eau souterraine a la pollution[R]. Orléans: Bureau de Recherches Géologiques et Minières, 1968. [百度学术]
张丽君. 地下水脆弱性和风险性评价研究进展综述[J]. 水文地质工程地质, 2006, 33(6): 113. [百度学术]
ZHANG Lijun. Review on groundwater vulnerability and risk assessment[J]. Hydrogeology & Engineering Geology, 2006, 33(6): 113. [百度学术]
孙才志, 陈相涛, 陈雪姣, 等. 地下水污染风险评价研究进展[J]. 水利水电科技进展, 2015,35(5):152. [百度学术]
SUN Caizhi, CHEN Xiangtao, CHEN Xuejiao, et al. Recent advances in groundwater contamination risk assessment[J]. Advances in Science and Technology of Water Resources, 2015, 35(5): 152. [百度学术]
GOYAL D, HARITASH A K, SINGH S K. A comprehensive review of groundwater vulnerability assessment using index-based, modelling, and coupling methods[J]. Journal of Environmental Management, 2021, 296: 113161. [百度学术]
滕彦国, 苏洁, 翟远征, 等. 地下水污染风险评价的迭置指数法研究综述[J]. 地球科学进展, 2012, 27(10): 1140. [百度学术]
TENG Yanguo, SU Jie, ZHAI Yuanzheng, et al. A review on the overlay and index method for groundwater pollution risk assessment[J]. Advances in Earth Science, 2012, 27(10): 1140. [百度学术]
MACHIWAL D, JHA M K, SINGH V P, et al. Assessment and mapping of groundwater vulnerability to pollution: current status and challenges[J]. Earth-Science Reviews, 2018, 185: 901. [百度学术]
ALLER L, LEHR J H, PETTY R, et al. DRASTIC: a standardized system to evaluate groundwater pollution potential using hydrogeologic settings[J]. Journal of the Geological Society of India, 1987, 29(1): 23. [百度学术]
IBE K M, NWANKWOR G I, ONYEKURU S O. Assessment of ground water vulnerability and its application to the development of protection strategy for the water supply aquifer in Owerri, southeastern Nigeria[J]. Environmental Monitoring and Assessment, 2001, 67(3): 323. [百度学术]
SOEDER D J, SHARMA S, PEKNEY N, et al. An approach for assessing engineering risk from shale gas wells in the United States[J]. International Journal of Coal Geology, 2014, 126: 4. [百度学术]
LOVELESS S E, LEWIS M A, BLOOMFIELD J P, et al. A method for screening groundwater vulnerability from subsurface hydrocarbon extraction practices[J]. Journal of Environmental Management, 2019, 249: 109349. [百度学术]
VENGOSH A, JACKSON R B, WARNER N, et al. A critical review of the risks to water resources from unconventional shale gas development and hydraulic fracturing in the United States[J]. Environmental Science & Technology, 2014, 48(15): 8334. [百度学术]
PINTI D L, GELINAS Y, MORITZ A M, et al. Anthropogenic and natural methane emissions from a shale gas exploration area of Quebec, Canada[J]. Science of the Total Environment, 2016, 566: 1329. [百度学术]
MCINTOSH J C, HENDRY M J, BALLENTINE C, et al. A critical review of state-of-the-art and emerging approaches to identify fracking-derived gases and associated contaminants in aquifers[J]. Environmental Science & Technology, 2019, 53(3): 1063. [百度学术]
陆争光, 高鹏, 马晨波, 等. 页岩气采出水污染及处理技术进展[J]. 天然气与石油, 2015, 33(6): 90. [百度学术]
LU Zhengguang, GAO Peng, MA Chenbo, et al. Technical progress of shale gas produced water contamination and treatment[J]. Natural Gas and Oil, 2015, 33(6): 90. [百度学术]
WILSON M P, WORRALL F, CLANCY S A, et al. Compartmentalization and groundwater-surface water interactions in a prospective shale gas basin: assessment using variance analysis and multivariate statistics on water quality data[J]. Hydrological Processes, 2020, 34(15): 3271. [百度学术]
WISEN J, CHESNAUX R, WENDLING G, et al. Assessing the potential of cross-contamination from oil and gas hydraulic fracturing: a case study in northeastern British Columbia, Canada[J]. Journal of Environmental Management, 2019, 246: 275. [百度学术]
LI W, DONG Z, WANG C. Risk assessment for groundwater contamination from hydraulic fractured shale to aquifers[C]//Abu Dhabi International Petroleum Exhibition & Conference. Abu Dhabi: OnePetro, 2017: SPE-188585-MS. [百度学术]
FARES A. Emerging issues in groundwater resources[M]. Cham: Springer, 2016. [百度学术]
LAVOIE D, RIVARD C, LEFEBVRE R, et al. The Utica shale and gas play in southern Quebec: geological and hydrogeological syntheses and methodological approaches to groundwater risk evaluation[J]. International Journal of Coal Geology, 2014, 126: 77. [百度学术]
DAVIES R J, MATHIAS S A, MOSS J, et al. Hydraulic fractures: how far can they go?[J]. Marine and Petroleum Geology, 2012, 37(1): 1. [百度学术]
HAMMACK R, HARBERT W, SHARMA S, et al. An evaluation of fracture growth and gas/fluid migration as horizontal Marcellus shale gas wells are hydraulically fractured in Greene County, Pennsylvania[R]. Pittsburgh: National Energy Technology Laboratory, 2014. [百度学术]
HOLLOWAY M D, RUDD O. Fracking: the operations and environmental consequences of hydraulic fracturing[M]. New York: John Wiley & Sons, 2013. [百度学术]
WILSON M P, WORRALL F, DAVIES R J, et al. Shallow aquifer vulnerability from subsurface fluid injection at a proposed shale gas hydraulic fracturing site[J]. Water Resources Research, 2017, 53(11): 9922. [百度学术]
BROWNLOW J W, JAMES S C, YELDERMAN J C. Influence of hydraulic fracturing on overlying aquifers in the presence of leaky abandoned wells[J]. Groundwater, 2016, 54(6): 781. [百度学术]
MYERS T. Potential contaminant pathways from hydraulically fractured shale to aquifers[J]. Groundwater, 2012, 50(6): 872. [百度学术]
芦红, 王丽, 杨鑫鑫, 等. 水力压裂对地下水影响的深部脆弱性评价[J]. 地球科学, 2019, 44(9): 2920. [百度学术]
LU Hong, WANG Li, YANG Xinxin, et al. Deep vulnerability assessment of hydraulic fracturing effect on groundwater[J]. Earth Science, 2019, 44(9): 2920. [百度学术]
LOVELESS S E, BLOOMFIELD J P, WARD R S, et al. Characterising the vertical separation of shale-gas source rocks and aquifers across England and Wales (UK)[J]. Hydrogeology Journal, 2018, 26(6): 1975. [百度学术]
REAGAN M T, MORIDIS G J, KEEN N D, et al. Numerical simulation of the environmental impact of hydraulic fracturing of tight/shale gas reservoirs on near-surface groundwater: background, base cases, shallow reservoirs, short-term gas, and water transport[J]. Water Resources Research, 2015, 51(4): 2543. [百度学术]
JABBARI N, AMINZADEH F, DE BARROS F P J. Hydraulic fracturing and the environment: risk assessment for groundwater contamination from well casing failure[J]. Stochastic Environmental Research and Risk Assessment, 2017, 31(6): 1527. [百度学术]
BIRDSELL D T, RAJARAM H, DEMPSEY D, et al. Hydraulic fracturing fluid migration in the subsurface: a review and expanded modeling results[J]. Water Resources Research, 2015, 51(9): 7159. [百度学术]
GASSIAT C, GLEESON T, LEFEBVRE R, et al. Hydraulic fracturing in faulted sedimentary basins: numerical simulation of potential contamination of shallow aquifers over long time scales[J]. Water Resources Research, 2013, 49(12): 8310. [百度学术]
WANG L, DONG Y, ZHANG Q, et al. Numerical simulation of pressure evolution and migration of hydraulic fracturing fluids in the shale gas reservoirs of Sichuan Basin, China[J]. Journal of Hydrology, 2020, 588: 125082. [百度学术]
TAHERDANGKOO R, TATOMIR A, ANIGHORO T, et al. Modeling fate and transport of hydraulic fracturing fluid in the presence of abandoned wells[J]. Journal of Contaminant Hydrology, 2019, 221: 58. [百度学术]
刘兆彬. 岩溶区页岩气开采浅层地下水污染风险评价[D]. 北京: 中国地质大学(北京), 2016. [百度学术]
LIU Zhaobin. Risk assessment of shallow groundwater pollution under shale gas extraction in Karst area[D]. Beijing: China University of Geosciences (Beijing), 2016. [百度学术]
张虹, 张代钧, 卢培利. 重庆市页岩气开采的浅层地下水污染风险评价[J]. 环境工程学报, 2017, 11(4): 2016. [百度学术]
ZHANG Hong, ZHANG Daijun, LU Peili. Primary assessment of shallow ground water pollution risk for shale gas exploitation in Chongqing[J]. Chinese Journal of Environmental Engineering, 2017, 11(4): 2016. [百度学术]
HOLDING S, ALLEN D M, NOTTE C, et al. Enhancing water security in a rapidly developing shale gas region[J]. Journal of Hydrology: Regional Studies, 2017, 11: 266. [百度学术]
李绍康. 页岩气开发对地下水环境污染及评价模型研究[D]. 石家庄: 河北地质大学, 2018. [百度学术]
LI Shaokang. Study on the groundwater environment pollution affected by shale gas development and its evaluation model[D]. Shijiazhuang: Hebei GEO University, 2018. [百度学术]
WANG Z, WU Q, ZHANG Y, et al. Confined groundwater pollution mechanism and vulnerability assessment in oilfields, North China[J]. Environmental Earth Sciences, 2011, 64(6): 1547. [百度学术]
ESTERHUYSE S. Developing a groundwater vulnerability map for unconventional oil and gas extraction: a case study from South Africa[J]. Environmental Earth Sciences, 2017, 76(17): 626. [百度学术]
辜海林, 岳晓晶, 陈鸿汉, 等. 页岩气开采区地下水脆弱性评价模型[J]. 水资源保护, 2018,34(5):57. [百度学术]
GU Hailin, YUE Xiaojing, CHEN Honghan, et al. Assessment model of groundwater vulnerability in shale gas exploitation area[J]. Water Resources Protection, 2018, 34(5): 57. [百度学术]
VEIGUELA M, HURTADO A, EGUILIOR S, et al. A risk assessment tool applied to the study of shale gas resources[J]. Science of the Total Environment, 2016,571:551. [百度学术]
ROSALES-RAMIREZ T Y, KIRSTE D, ALLEN D M, et al. Mapping the vulnerability of groundwater to wastewater spills for source water protection in a shale gas region[J]. Sustainability, 2021, 13(7): 3987. [百度学术]
FLETCHER S M. Risk assessment of groundwater contamination from hydraulic fracturing fluid spills in Pennsylvania[D]. Boston: Massachusetts Institute of Technology, 2012. [百度学术]
DAKHEEL ALMALIKI A J, BASHIR M J K, LLAMAS BORRAJO J F. Appraisal of groundwater contamination from surface spills of fluids associated with hydraulic fracturing operations[J]. Science of the Total Environment, 2022, 815: 152949. [百度学术]
张鑫. 基于过程模拟法的地下水污染风险评价[D]. 长春: 吉林大学, 2014. [百度学术]
ZHANG Xin. Groundwater pollution risk assessment based on process simulation method[D]. Changchun: Jilin University, 2014. [百度学术]
MOLSON J, FRIND E. On the use of mean groundwater age, life expectancy and capture probability for defining aquifer vulnerability and time-of-travel zones for source water protection[J]. Journal of Contaminant Hydrology, 2012, 127(1/4): 76. [百度学术]
NEUPAUER R M, WILSON J L. Numerical implementation of a backward probabilistic model of ground water contamination[J]. Groundwater, 2004, 42(2): 175. [百度学术]
SORIANO M A, SIEGEL H G, GUTCHESS K M, et al. Evaluating domestic well vulnerability to contamination from unconventional oil and gas development sites[J]. Water Resources Research, 2020, 56(10): e2020W. [百度学术]
MALLANTS D, DOBLE R, BEIRAGHDAR Y. Fate and transport modelling framework for assessing risks to soil and groundwater from chemicals accidentally released during surface operations: an Australian example application from shale gas developments[J]. Journal of Hydrology, 2022, 604: 127271. [百度学术]
LIANG J, LI W, BRADFORD S A, et al. Physics-informed data-driven models to predict surface runoff water quantity and quality in agricultural fields[J]. Water, 2019, 11(2): 200. [百度学术]
FIENEN M N, NOLAN B T, FEINSTEIN D T. Evaluating the sources of water to wells: three techniques for metamodeling of a groundwater flow model[J]. Environmental Modelling & Software, 2016, 77: 95. [百度学术]
SORIANO M A, SIEGEL H G, JOHNSON N P, et al. Assessment of groundwater well vulnerability to contamination through physics-informed machine learning[J]. Environmental Research Letters, 2021, 16(8): 84013. [百度学术]
SORIANO M A, DEZIEL N C, SAIERS J E. Regional scale assessment of shallow groundwater vulnerability to contamination from unconventional hydrocarbon extraction[J]. Environmental Science & Technology, 2022, 56(17): 12126. [百度学术]
SINKEVICH M G, WALTER M T, LEMBO A J, et al. A GIS-based ground water contamination risk assessment tool for pesticides[J]. Ground Water Monitoring and Remediation, 2005, 25(4): 82. [百度学术]
DOBLE R, MALLANTS D, AGHBELAGH Y B, et al. Potential impacts of shale and tight gas developments on unconfined aquifers: a chemical screening framework[J]. The APPEA Journal, 2021,61(2):389. [百度学术]
芦红. 水力压裂对地下水影响的数值模拟研究[D]. 北京: 中国地质大学(北京), 2019. [百度学术]
LU Hong. Numerical investigation of potential impacts of hydraulic fracturing on groundwater environment[D]. Beijing: China University of Geosciences (Beijing), 2019. [百度学术]
韩嘉琛. 页岩气开采引起的地下水污染物溶质运移研究: 以长宁地区为例[D]. 石家庄: 河北地质大学, 2022. [百度学术]
HAN Jiachen. Research on solute transport of groundwater pollutants caused by shale gas exploitation: taking Changning area as an example[D]. Shijiazhuang: Hebei GEO University, 2022. [百度学术]
LU H, KANG Y, LIU L, et al. Comprehensive groundwater safety assessment under potential shale gas contamination based on integrated analysis of reliability-resilience-vulnerability and gas migration index[J]. Journal of Hydrology, 2019, 578: 124072. [百度学术]
EDWARDS R W J, CELIA M A. Shale gas well, hydraulic fracturing, and formation data to support modeling of gas and water flow in shale formations[J]. Water Resources Research, 2018, 54(4): 3196. [百度学术]
MILTON-THOMPSON O, JAVADI A A, KAPELAN Z, et al. Developing a fuzzy logic-based risk assessment for groundwater contamination from well integrity failure during hydraulic fracturing[J]. Science of the Total Environment, 2021, 769: 145051. [百度学术]
李强,毛江鸿,黄铭枫.结合台风全路径模拟的混合气候极值风速估计[J].振动与冲击,2020,39(23):84. [百度学术]
LI Qiang, MAO Jianghong, HUANG Mingfeng. Mixed climatic extreme wind speed estimation combined with typhoon full-path simulation[J]. Journal of Vibration and Shock,2020,39(23):84. [百度学术]
VICKERY P J, SKERLJ P F, TWISDALE L A. Simulation of hurricane risk in the U.S. using empirical track model[J]. Journal of Structural Engineering, 2000,126(10):1222. [百度学术]
POWELL M, SOUKUP G, COCKE S, et al. State of Florida hurricane loss projection model: atmospheric science component[J].Journal of Wind Engineering & Industrial Aerodynamics, 2005,93(8):651. [百度学术]
LI S H, HONG H P. Observations on a hurricane wind hazard model used to map extreme hurricane wind speed[J].Journal of Structural Engineering, 2014,141(10): 04014238. [百度学术]
LI S H, HONG H P. Typhoon wind hazard estimation for China using an empirical track model[J] Natural Hazards, 2016,82(2):1. [百度学术]
EMANUEL K A. The maximum intensity of hurricanes[J].Journal of the Atmospheric Sciences,1988,45(7):1143. [百度学术]
BATTS M E, SIMIU E, RUSSELL L R. Hurricane wind speeds in the United States[J]. Journal of the Structural Division, 1980, 106: 2001. [百度学术]
王晓芳,李红莉,王金兰.登陆我国热带气旋的气候特征[J].暴雨灾害,2007(3):251. [百度学术]
WANG Xiaofang, LI Hongli, WANG Jinlan. Climatic characteristics of tropical cyclones landing in China[J]. Torrential Rain and Disasters,2007(3): 251. [百度学术]
李强. 混合气候极值风速估计和高层建筑风致响应分析模型研究[D].杭州:浙江大学,2018. [百度学术]
LI Qiang. Study on mixed climate extreme wind speed estimation and wind-induced response analysis model of high-rise buildings[D]. Hangzhou: Zhejiang University,2018. [百度学术]
王彦俊.中国近海热带气旋路径集合数据集(1945―2021) [DB/OL]. [2022-05-10]. http://msdc.qdio.ac.cn. [百度学术]
WANG Yanjun. Tropical cyclone track dataset off the coast of China(1945―2021) [DB/OL]. [2022-05-10]. http://msdc.qdio.ac.cn. [百度学术]
SHEN W. Does the size of hurricane eye matter with its intensity? [J]. Geophysical Research Letters, 33(18):18813. [百度学术]
KNAPP K R, VELDEN C S, WIMMERS A J. A global climatology of tropical cyclone eyes. [J]. Monthly Weather Review, 2018,146(7):2089. [百度学术]
LANDER M A. A tropical cyclone with a very large eye [J]. Monthly Weather Review, 1999,127(1):137. [百度学术]