摘要
以MIRA标准车型组(方背车S、快背车F和阶背车N)为研究对象,采用数值模拟研究纵向间距(0.1 L~1.0 L)统编(队列各车为同种车型)三车队列气动阻力的影响,并通过各部位压差阻力和流场分析,探究队列阻力变化的原因。结果表明:对于3种统编队列,整个队列的减阻量均是随着间距增大而不断减小,其中头车减阻量最大,其次是中车和尾车;头车减阻基本都随着间距增大而不断减小,归因于垂直尾部和后风窗背压回升的不断减弱;中车的方背车减阻量随着间距增大而逐渐减小,其他两车型均是在0.1 L~0.2 L减阻量大幅减小,随后基本保持较低减阻量不变;尾车的方背车减阻量同样随着间距增大而逐渐减小,在0.5 L后出现增阻,其他两车型减阻量基本较低并保持不变或有所增阻。以上阻力变化主要归因于不同间距下的尾迹低速流场改变导致的背压回升,以及前脸正压减弱、前缘圆角和A柱吸力减弱等的综合作用所致。
随着5G快速通信技术和汽车自动驾驶技术的到来,汽车队列行驶已成为可能。之前的研究已表明汽车队列行驶具有大幅减少气动阻力的潜力。纵向间距对于汽车队列行驶是一个很重要的因素,当间距大于一定距离时,就等同于单车行驶时的状态。当安全条件满足的情况下,间距越小,后车越处于前车的尾流当中,前后车的流场相互作用更强,队列各车的阻力变化也是更复杂。
Pagliarella
综上可知,汽车队列间距越小,队列整体减阻越多,但队列单车的阻力并非随间距减小而单调减小,有时甚至出现增阻。虽然关于汽车队列纵向间距的研究已有一定的结论,但间距对队列各车细分部位阻力的影响还鲜有研究;小间距下减阻量大,但由于车间流场较复杂,减阻机理还未明确,某些间距下出现增阻的原因尚不清楚;同时考虑车型和间距耦合影响的研究也还较少。针对上述不足,本文以快背(F)、阶背(N)和方背(S)这3种MIRA车型为研究对象,在之前1 L间距研
本研究对象为MIRA 1:1阶背、快背和方背模型,尺寸(长L×宽W×高H)为4 165 mm×1 625 mm×1 421 mm,3种模型只是尾部的结构不同,其它部位都是相同的,模型的三维效果图如

图1 MIRA模型组(快背F,阶背N,方背S)
Fig.1 MIRA model group (fastback F, notchback N and squareback S)
本文采用基于雷诺平均方法的不可压缩分离式求解器,模型选用Realizable k-ε (RKE)湍流模型,单车计算域如

图2 单车计算域和边界条件
Fig.2 The computational domain and boundary conditions of a single vehicle
体网格采用切割体网格,保证核心区网格为六面体网格,边界层网格总共5层,总厚度为7.4 mm,第一层边界层30<y+<60,到壁面的距离为1 mm,数值仿真的雷诺数为9.19×1
前期对三车队列的网格无关性进行了研
(1) |
式中:Fd为空气阻力,单位 N; ρ∞为空气密度,单位 kg/

图3 队列中截面网格
Fig.3 The mesh in the middle cross-section of the platoon
由于实验条件限制,全尺寸的三车队列实验目前无法在风洞中实现,所以本研究只进行了单车实验验证,单车数值计算设置与上文所述队列数值计算设置相同。方背车模型的实验数据沿用前人实验得到
为了更全面地分析队列中各车阻力系数的变化,将3种模型划分出不同的子部件以便观察各部位阻力的变化。3种模型除了尾部的划分方法不一样外,其它区域的结构划分都相同,如

图4 MIRA模型拆解部件
Fig.4 Division of the components of MIRA vehicle model
本文的气动阻力分析是基于单车或队列整体阻力系数的变化量ΔCd来进行的,其定义如下:
(2) |

图5 间距对方背统编三车队列减阻的影响(负号表示相对单车为减阻,正号表示增阻)
Fig.5 The effect of inter-vehicle distance on the drag coefficient of the squareback 3-vehicle uniform platoons

图6 间距对方背统编三车队列各车不同部位压差阻力系数的影响:(a)头车S1;(b)中车S2;(c)尾车S3
Fig.6 The effect of inter-vehicle distance on the the pressure Cd of different parts in each member of the squareback 3-vehicle uniform platoons: (a) leading vehicle S1; (b) middle vehicle S2; (c) trailing vehicle S3
从
从

图7 间距对方背统编三车队列车身压力分布的影响:(a)前部;(b)尾部
Fig.7 The effect of inter-vehicle distance on the surface pressure distribution of the squareback 3-vehicle uniform platoons: (a) front; (b) rear

图8 间距对方背统编三车队列中截面速度场的影响
Fig.8 The effect of inter-vehicle distance on the mid-section velocity field of the squareback 3-vehicle uniform platoons
S2的背压与S1背压变化类似,原因也类似,只是由于头车的阻塞作用,中车的尾部气流速度降低,这种变化的趋势更小。从S2前部的压力云图来看,前缘圆角有一个压力升高再降低的过程,从

图9 间距对快背统编三车队列减阻的影响(负号表示相对单车是减阻的,正号表示增阻)
Fig.9 The effect of inter-vehicle distance on the drag reduction of the fastback 3-vehicle uniform platoons

图10 间距对快背统编三车队列各车不同部位压差阻力系数的影响:(a)头车F1;(b)中车F2;(c)尾车F3
Fig.10 The effect of inter-vehicle distance on the the pressure Cd of different parts in each member of the fastback 3-vehicle uniform platoons: (a) leading vehicle F1; (b) middle vehicle F2; (c) trailing vehicle F3
从
从
从

图11 间距对快背统编三车队列车身压力分布的影响:(a)前部;(b)尾部
Fig.11 The effect of inter-vehicle distance on the surface pressure distribution of the fastback 3-vehicle uniform platoons: (a) front; (b) rear

图12 间距对快背统编三车车列中截面速度场的影响
Fig.12 The effect of inter-vehicle distance on the mid-section velocity field of the fastback 3-vehicle uniform platoon

图13 间距对阶背车统编队列减阻的影响(负号表示相对单车是减阻的,正号表示增阻)
Fig.13 The effect of inter-vehicle distance on the drag reduction of the notchback 3-vehicle uniform platoons (the negative value means drag reduction and the positive value means drag increase)
本文采用数值模拟方法,研究了10种不同纵向间距(0.1 L~1.0 L)对3种统编队列(快背、阶背和方背)整体气动阻力以及队列各车各个细分部位的气动阻力的影响,并通过流场详细分析其阻力变化原因,得到的主要结论如下:
(1) 3种统编队列的减阻量均随间距增大不断减小,方背队列在0.1 L间距下减阻量最大,约为0.43;
(2) 3种队列中头车减阻最大,其次是中,尾车,头车减阻基本都随间距增大不断减小,归因于背压回升的不断减弱;
(3) 方背统编队列的中车减阻量随间距增大逐渐减小,而快背和阶梯背统编队列的中车均在0.1 L~0.2 L减阻量大幅减小,随后保持较低减阻量不变;
(4)方背统编队列的尾车减阻量同样随着间距增大逐渐减小,在0.5 L后出现增阻,其他两车型减阻量基本较低并保持不变或有所增阻;
(5) 以上阻力变化主要归因于不同间距下,尾迹低速流场改变导致的背压回升、前脸等正压减弱、前缘圆角等吸力减弱的综合作用;
(6) 方背车垂直背部的阻力变化转折,归因于小间距下尾涡的发展不完全和后车前缘圆角的影响,3种车型前缘圆角不同的阻力变化转折,主要归因于前车尾迹的不同。
参考文献
PAGLIARELLA R M, WATKINS S, TEMPIA A. Aerodynamic performance of vehicles in platoons: the influence of backlight angles[C]// SAE Technical Paper 2007-01-1547, 2007. [百度学术]
WATKINS S, VINO G. The effect of vehicle spacing on the aerodynamics of a representative car shape[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96(6/7):1232. [百度学术]
米珂. 汽车队列行驶的气动特性及间距优化研究[D]. 柳州:广西科技大学, 2022. [百度学术]
MI Ke. Research on aerodynamic characteristics andspacing optimization of vehicle platoon[D]. Liuzhou: Guangxi University of Science and Technology. 2022. [百度学术]
ELLIS M, GARGOLOFF J, SENGUPTA R. Aerodynamic drag and engine cooling effects on class 8 trucks in platooning configurations[J]. SAE Int J Commer Veh, 2015, 8(2): 732. [百度学术]
SALARI K, ORTEGA J. Experimental investigation of the aerodynamic benefits of truck platooning[C]// SAE Technical Paper, 2018-01-0732, 2018. [百度学术]
傅立敏, 吴允柱, 贺宝琴. 队列行驶车辆的空气动力特性[J]. 吉林大学学报(工学版), 2006, 36(6):871. [百度学术]
FU Limin, WU Yunzhu, HE Baoqin. Aerodynamic characteristics of vehicle platoon[J]. Journal of Jilin University (Engineering and Technology), 2006, 36(6):871. [百度学术]
王靖宇, 刘畅, 李胜. 队列行驶三辆汽车外流场的数值模拟[J]. 重庆交通大学学报(自然科学版), 2007(5):141. [百度学术]
WANG Jingyu, LIU Chang, LI Sheng. Numerical simulation of flow field around three-car platoon[J]. Journal of Chongqing Jiaotong University (Natural Sciences), 2007(5):141. [百度学术]
贺宝琴, 吴允柱, 傅立敏. 汽车外形对智能车辆队列行驶气动特性的影响[J]. 吉林大学学报(工学版), 2008, 38(1):7. [百度学术]
HE Baoqin, WU Yunzhu, FU Limin. Influence of vehicle shape on the aerodynamic characteristics of intelligent vehicle platoon[J]. Journal of Jilin University (Engineering and Technology), 2008, 38(1):7. [百度学术]
贺宝琴. 汽车队列行驶的气动特性研究[D]. 长春:吉林大学, 2009. [百度学术]
HE Baoqin. Research on automotive aerodynamic characteristics of platoon[D]. Changchun: Jilin University. 2009. [百度学术]
仇健, 谷正气, 王师,等. 队列行驶领航车辆尾流的粒子图像测速试验研究[J]. 汽车工程, 2011, 33(2):118. [百度学术]
QIU Jian, GU Zhengqi, WANG Shi, et al. An experimental study on the wake flow of leading vehicle in platoon driving with PIV Technology[J]. Automotive Engineering, 2011, 33(2):118. [百度学术]
YANG Z F, LI S H, LIU A, et al. Simulation study on energy saving of passenger car platoons based on DrivAer model[J]. Energy Sources Part A: Recovery, Utilization, and Environmental Effects, 2019, 41(24): 3076. [百度学术]
杨志刚,郭婷,夏超,等. 汽车车型对三车队列行驶气动阻力的影响[J]. 同济大学学报(自然科学版), 2023(已录用). [百度学术]
YANG Zhigang, GUO Ting, XIA Chao, et al. The effects of vehicle types on three cars platooning aerodynamics[J]. Journal of Tongji University (Natural Science), 2023 (accepted). [百度学术]
ALTINISIK A, YEMENICI O, UMUR H. Aerodynamic analysis of a passenger car at yaw angle and two-vehicle platoon[J]. Journal of Fluids Engineering, 2015, 137(12):121107. [百度学术]
MCAULIFFE B, BARBER H. Aerodynamic drag of road vehicles in close lateral proximity[C]// SAE Technical Paper 2023-01- 0952, 2023. [百度学术]
王师. MIRA模型组气动特性模型风洞试验研究[D]. 长沙:湖南大学, 2011. [百度学术]
WANG Shi. Experimental investigation on aerodynamic characteristics of MIRA model group in wind tunnel[D]. Changsha: Hunan University, 2011. [百度学术]
周华. MIRA车型组气动特性数值计算与试验研究[D]. 上海:同济大学, 2019. [百度学术]
ZHOU Hua. Numerical simulation and wind tunnel test on aerodynamic characteristics of MIRA models[D]. Shanghai: Tongji University, 2019. [百度学术]
ZHU Hui, YANG Zhigang. Grid independence and scheme research for simulating aerodynamic drag of MIRA model[C]//Iet International Conference on Information Science & Control Engineering. IET, 2014. [百度学术]
DU Qianqian, HU Xingjun, LI Qifei, et al. Numerical optimization research on rear characteristic angles based on MIRA model for aerodynamic drag reduction[J]. Advanced Materials Research, 2013, 774:428. [百度学术]
GU Zhengqi, WANG Shi, QIU Jian, et al. Wind tunnel tests of MIRA model group for study of vehicle's rear shape[J]. Science & Technology Review, 2011, 29(8):67. [百度学术]