摘要
开路电压(OCV)是准确估计电动汽车锂离子电池荷电状态(SoC)的重要参数。由于OCV-SoC的映射关系随着电池老化而持续变化,因此在某一特定阶段确定的OCV-SoC函数无法适用于电池全生命周期内的SoC估计,由此需要对OCV进行定期测试及老化校准。受OCV-SoC曲线迟滞现象的影响,传统的OCV测试通常需要数天时间才能获得一个或多个完全充放电周期的数据,因此从电动车实际运行的维度上缺乏OCV实时测试和校准的可实现性。本文提出了一种快速灵活的OCV-SoC提取方法,主要基于锂电池放电过程的OCV-t曲线平滑性假设,利用非支配排序遗传算法(NSGA-II)实现基于任意电流-电压测量数据的OCV-SoC关系提取;随后在UDDS工况下结合拓展卡尔曼滤波(EKF)进行了SoC验证。结果表明,基于平滑性假设可以有效地构建OCV-SoC的映射关联,其中SoC的最大估计误差为2%,且不受滤波器SoC初值的影响。
与其它蓄电设备(EES)相比,锂离子电池具有更高的能量密度和功率密度、长日历(calendar)寿命和循环(cycling)寿命、高库伦效率以及低自放电率等优
由于SoC难以直接测量得到,因此学者们提出了一系列SoC的估计方
由于OCV需要在电池平衡状态下测量得到,且电池存在迟滞效应,因此采用传统的方法来确定OCV和SoC之间的映射关系需要较长的时间,例如采用递增OCV(IO)测
在以往的一些研究中,OCV有时被视为模型参数的一部分,可在放电过程中通过递归最小二乘
本文提出了一种快速灵活的OCV-SoC映射提取方法,主要基于锂电池放电过程的OCV-t曲线平滑性假设,利用非支配排序遗传算法(NSGA-II)实现了基于任意电流-电压测量数据的OCV-SoC关系提取,随后在UDDS工况下结合拓展卡尔曼滤波(EKF)进行了SoC验证。研究结果表明,基于平滑性假设可以有效地构建OCV-SoC的映射关联,且不受滤波器SoC初值的影响。本研究旨在为电动车复杂运行工况下的在线参数(OCV-SoC)评估和校准提供一种新的解决思路和处理方法。

图 1 基于平滑性假设的OCV-SoC映射提取流程
Fig. 1 OCV-SoC mapping extraction process based on smoothness assumption
由于本方法涉及采用ECM计算电池的OCV曲线,因此ECM的选择将直接影响OCV曲线提取的准确性和效率。一阶等效电路(见

图 2 一阶等效电路
Fig. 2 First order equivalent circuit
(1) |
式中:, 和分别表示开路电压、端电压、内阻分压和电极极化分压,分别表示等效电路中的电阻、电极极化电容和电极极化电阻。
定义锂电池的系统参数。在给定一组等效电路参数并且忽略其在同一充放电循环内随SoC和其他因素变化的前提下,有以下状态转移方程
(2) |
式中:为电流负载,为测量得到的端电压,为RC单元的时间常数,。取时间步长为,将
(3) |
放电开始前将电池静置,一段时间后可以认为电池系统参数初值。。根据

图 3 一段放电过程内的OCV-t曲线
Fig. 3 OCV-t curve in a discharge process
注: 浅色线表示错误的ECM参数计算结果,深色线表示正确的ECM参数计算结果。
由
(4) |
式中:表示在第和个时间步之间的差值,如
(5) |
其中:和分别表示电池的最高截止开路电压和最低截止开路电压;系数()用于补偿放电过程中制动回收(brake recovery)导致的电池电动势的反向变化(升高),如表示放电过程无制动回收。

图 4 ΔUoc 示意图
Fig.4 ΔUoc schematic diagram
(6) |
根据测量值可以直接计算得到和,因此等式的左边可以视为以等效电路参数为自变量的函数。为了简化表示,定义,则
(7) |
此时,引入新的方程(8):
(8) |
正如前文所述,由于等效电路参数是未知的,因此在实际求解OCV的过程中只能使用的估计值,即,因此可将方程(8)重新表达为:
(9) |
为了便于表述,此处定义:
(10) |
表示估计的OCV曲线和理想曲线的偏离程度,可被视为OCV曲线的平滑性指标。其取值主要受以下因素的影响: ① 一阶等效电路仅使用一个RC单元来简化迟滞效应和极化现象,因此可能引入一定的模型误差; ② 等效电路参数估计的不准确引起的OCV曲线计算误差; ③ 传感器采样频率低导致的“频率失真”(frequency distortion)。基于此,可通过等效电路参数的优化以降低上述第二个因素对的贡献,从而使更接近0。注意到,因此本文的目标是将最小化,即等效电路参数的求解可以表示为:
(11) |
由此,将
本实验使用斯坦福大学能源控制实验室提供的电池老化数据
需要注意的是,该数据集并没有提供SoC和真实值。因此,本文采用安时积分(AHC)来计算SoC的参考值,定义放电截止时刻的SoC为0。
(12) |
初值和取值范围通常对优化问题的求解至关重要。根据先验知识水平可将此类问题分为以下两种情况:几乎没有先验知识,需要广泛地搜索参数空间;根据已知参数的近似值以此加速优化的收敛。实验设置一和实验设置二(见
实验设置 | 变量名 | 初值 | 取值范围 |
---|---|---|---|
实验设置一 |
1×1 | (0, 1] | |
1×1 | (0, 1] | ||
1 F |
(0, 1×1 | ||
实验设置二 | 0.028 5 Ω | (0, 0.1] | |
0.012 7 Ω | (0, 0.1] | ||
1 270 F |
(0, 1×1 |

图 5 目标函数随迭代次数的变化曲线
Fig.5 The variation of optimization objective with the number of iterations
实验设置 | 迭代次数 | 目标函数值 | |||
---|---|---|---|---|---|
实验设置一 | 1 | 0.001 2 | 0.160 4 | 971 | 186.85 |
25 | 0.029 2 | 0.015 6 | 1 427 | 6.59 | |
50 | 0.028 6 | 0.011 7 | 1 429 | 5.13 | |
100 | 0.028 6 | 0.013 1 | 1 297 | 5.01 | |
实验设置二 | 1 | 0.027 2 | 0.012 0 | 7 217 | 9.51 |
25 | 0.028 6 | 0.014 5 | 1 332 | 5.02 | |
50 | 0.028 5 | 0.013 4 | 1 308 | 5.01 | |
100 | 0.028 5 | 0.012 7 | 1 273 | 5.00 |

图 6 NSGA-II的求解过程
Fig. 6 The solving process of NSGA-II
(a) 经任意初始化(实验一); (b) 经恰当初始化(实验二)

图 7 优化目标在变量约束空间内的取值
Fig. 7 Optimize values of the target in the variable constraint space
(a) 优化目标在变量约束空间内的所有取值 (b) 优化目标F与变量R1、C1的关系
首先,通过傅里叶变换可以获取放电工况(UDDS)内电流信号的频域特性,如

图 8 一个放电周期内的电流信号的时频特性
Fig. 8 Time/frequency characteristics of the current signal in a discharge cycle
(a) 时域特性 (b) 频域特性

图 9 奈奎斯特图:样本点来自EIS测试,曲线是优化得到的等效电路的计算结果
Fig. 9 Nyquist diagram: The sample points are derived from EIS tests, and the curves are the calculated results of the optimized equivalent circuits

图10 优化计算得到的OCV-t曲线
Fig.10 Optimized OCV-t curve obtained from calculation
(a) 电流-时间曲线 (b) SoC参考值⁃时间曲线 (c) 电压⁃时间曲线 (d) OCV估计值⁃时间曲线

图11 提取的OCV-SoC曲线
Fig.11 Extracted OCV - SoC curve
基于提取所得的OCV-SoC曲线,本研究进一步结合EK

图 12 EKF放电过程的SoC估计
Fig. 12 SoC estimation results of EKF discharge process
(a) 无干扰 (b) 有干扰
本研究基于OCV曲线的平滑性假设理论推导,结合优化求解器NSGA-II将等效电路参数的求解和OCV曲线的提取转化为多维空间的全局最优问题,提出了一种可基于任意电压电流测量序列准确地提取OCV-SoC曲线的方法,由此避免了耗时的传统OCV测试。经复杂的UDDS工况验证,本方法的OCV提取结果有较高的精度及鲁棒性,即SoC的最大估计误差为2%,且不受滤波器SoC初值的影响,同时在信号干扰下可快速有效地对滤波器(EKF)的SoC估计进行修正。此外,本方法无须专用仪器设备获取数据,易于集成在车载系统之内,可望为电动车的在线参数校准提供实际意义上的参考。
参考文献
ZUBI G, DUFO-LOPEZ R, CARVALHO M, et al. The lithium-ion battery: state of the art and future perspectives[J]. Renewable & Sustainable Energy Reviews, 2018, 89: 292. [百度学术]
DU X, ZHAO L, YANG Z, et al. A closed-loop control on temperature difference of a lithium-ion battery by pulse heating in cold climates [J]. Journal of Energy Storage, 2023, 57. [百度学术]
ZHAO L, DU X, YANG Z, et al. Online state of health estimation with deep learning frameworks based on short and random battery charging data segments [J]. Journal of The Electrochemical Society, 2023, 170(9): 090537. [百度学术]
HERRMANN F, ROTHFUSS F. Introduction to hybrid electric vehicles, battery electric vehicles, and off-road electric vehicles [M]//SCROSATI B, GARCHE J, TILLMETZ W. Advances in Battery Technologies for Electric Vehicles. Elsevier, 2015: 3. DOI: 10.1016/c2014-0-02665-2. [百度学术]
SHAREEF H, ISLAM M M, MOHAMED A. A review of the stage-of-the-art charging technologies, placement methodologies, and impacts of electric vehicles[J]. Renewable & Sustainable Energy Reviews, 2016, 64: 403. [百度学术]
YONG J Y, RAMACHANDARAMURTHY V K, TAN K M, et al. A review on the state-of-the-art technologies of electric vehicle, its impacts and prospects [J]. Renewable & Sustainable Energy Reviews, 2015, 49: 365. [百度学术]
CAMPESTRINI C, HORSCHE M F, ZILBERMAN I, et al. Validation and benchmark methods for battery management system functionalities: state of charge estimation algorithms [J]. Journal of Energy Storage, 2016, 7: 38. [百度学术]
ZHANG Y H, SONG W J, LIN S L, et al. A critical review on state of charge of batteries [J]. Journal of Renewable and Sustainable Energy, 2013, 5(2). [百度学术]
POP V,BERGVELD H J,NOTTEN, P H L, et al. State-of-the-art of battery state-of-charge determination[J]. Measurement Science & Technology, 2005, 16(12): R93. [百度学术]
TIAN Y, XIA B Z, SUN W, et al. A modified model based state of charge estimation of power lithium-ion batteries using unscented Kalman filter [J]. Journal of Power Sources, 2014, 270: 619. [百度学术]
YANG F F, XING Y J, WANG D, et al. A comparative study of three model-based algorithms for estimating state-of-charge of lithium-ion batteries under a new combined dynamic loading profile [J]. Applied Energy, 2016, 164: 387. [百度学术]
WANG S L, SHANG L P, LI Z F, et al. Online dynamic equalization adjustment of high-power lithium-ion battery packs based on the state of balance estimation [J]. Applied Energy, 2016, 166: 44. [百度学术]
DAI H F, XU T J, ZHU L T, et al. Adaptive model parameter identification for large capacity Li-ion batteries on separated time scales [J]. Applied Energy, 2016, 184: 119. [百度学术]
XIA B, ZHAO X, DE CALLAFON R, et al. Accurate Lithium-ion battery parameter estimation with continuous-time system identification methods[C]// Proceedings of the 8th Annual IEEE Energy Conversion Congress and Exposition (ECCE). Milwaukee, WI: IEEE, 2016. [百度学术]
XU J, MI C C, CAO B G, et al. The state of charge estimation of lithium-ion batteries based on a proportional-integral observer[J]. Ieee Transactions on Vehicular Technology, 2014, 63(4): 1614. [百度学术]
RAHIMI-EICHI H, BARONTI F, CHOW M Y. Online adaptive parameter identification and state-of-charge coestimation for lithium-polymer battery cells[J]. Ieee Transactions on Industrial Electronics, 2014, 61(4): 2053. [百度学术]
GUO X W, LIU K Y, JIA C Z, et al. Fluid evolution in the Dabei Gas Field of the Kuqa Depression, Tarim Basin, NW China: Implications for fault-related fluid flow[J]. Marine and Petroleum Geology, 2016, 78: 1. [百度学术]
YANG J F, XIA B, SHANG Y L, et al. Improved battery modeling approach considering operating scenarios for HEV/EV applications[C]//Proceedings of the 32nd Annual IEEE Applied Power Electronics Specialists Conference and Exposition (APEC). Tampa, FL: 2017. [百度学术]
WENG C H, SUN J, PENG H. A unified open-circuit-voltage model of lithium-ion batteries for state-of-charge estimation and state-of-health monitoring[J]. Journal of Power Sources, 2014, 258: 228. [百度学术]
PLETT G L. Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 2 Modeling and identification[J]. Journal of Power Sources, 2004, 134(2): 262. [百度学术]
MENG J H, LUO G Z, GAO F. Lithium polymer battery state-of-charge estimation based on adaptive unscented kalman filter and support vector machine [J]. Ieee Transactions on Power Electronics, 2016, 31(3): 2226. [百度学术]
ZOU Z, XU J, MI C, et al. Evaluation of model based state of charge estimation methods for lithium-ion batteries[J]. Energies, 2014, 7(8): 5065. [百度学术]
HU Y, YURKOVICH S, GUEZENNEC Y, et al. Electro-thermal battery model identification for automotive applications [J]. Journal of Power Sources, 2011, 196(1): 449. [百度学术]
TONG S, KLEIN M P, PARK J W. On-line optimization of battery open circuit voltage for improved state-of-charge and state-of-health estimation[J]. Journal of Power Sources, 2015, 293: 416. [百度学术]
WENG C, SUN J, PENG H. A unified open-circuit-voltage model of lithium-ion batteries for state-of-charge estimation and state-of-health monitoring[J]. Journal of Power Sources, 2014, 258: 228. [百度学术]
XIONG R, YU Q, WANG L Y, et al. A novel method to obtain the open circuit voltage for the state of charge of lithium ion batteries in electric vehicles by using H infinity filter[J]. Applied Energy, 2017, 207: 346. [百度学术]
LAVIGNE L, SABATIER J, FRANCISCO J M, et al. Lithium-ion open circuit voltage (OCV) curve modelling and its ageing adjustment[J]. Journal of Power Sources, 2016, 324: 694. [百度学术]
PATTIPATI B, BALASINGAM B, AVVARI G V, et al. Open circuit voltage characterization of lithium-ion batteries [J]. Journal of Power Sources, 2014, 269: 317. [百度学术]
LEE S J, KIM J H, LEE J M, et al. The state and parameter estimation of an li-ion battery using a new OCV-SOC concept[C]//Proceedings of the 38th IEEE Power Electronic Specialists Conference (PESC 07). Orlando, FL:2007. [百度学术]
HE H W, ZHANG X W, XIONG R, et al. Online model-based estimation of state-of-charge and open-circuit voltage of lithium-ion batteries in electric vehicles[J]. Energy, 2012, 39(1): 310. [百度学术]
ZHANG C, LI K, PEI L, et al. An integrated approach for real-time model-based state-of-charge estimation of lithium-ion batteries[J]. Journal of Power Sources, 2015, 283: 24. [百度学术]
CHIANG Y H, SEAN W Y, KE J C. Online estimation of internal resistance and open-circuit voltage of lithium-ion batteries in electric vehicles[J]. Journal of Power Sources, 2011, 196(8): 3921. [百度学术]
HE H W, XIONG R, GUO H Q. Online estimation of model parameters and state-of-charge of LiFePO4 batteries in electric vehicles[J]. Applied Energy, 2012, 89(1): 413. [百度学术]
PARTOVIBAKHSH M, LIU G J. An adaptive unscented kalman filtering approach for online estimation of model parameters and state-of-charge of lithium-ion batteries for autonomous mobile robots[J]. Ieee Transactions on Control Systems Technology, 2015, 23(1): 357. [百度学术]
BARCELLONA S, COLNAGO S, DOTELLI G, et al. Aging effect on the variation of Li-ion battery resistance as function of temperature and state of charge[J]. Journal of Energy Storage, 2022, 50. [百度学术]
LAI X, ZHENG Y, SUN T. A comparative study of different equivalent circuit models for estimating state-of-charge of lithium-ion batteries[J]. Electrochimica Acta, 2018, 259: 566. [百度学术]
FAN B, REN S, LUO Y. Research on relationship between SOC and OCV of lithium ion battery under actual application condition[J]. Chinese Journal of Power Sources, 2018, 42(5): 641. [百度学术]
DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182. [百度学术]
POZZATO G, ALLAM A, ONORI S. Lithium-ion battery aging dataset based on electric vehicle real-driving profiles[J]. Data in Brief, 2022, 41. 107995. https://doi.org/10.1016/j.dib.2022.107995. [百度学术]