摘要
采用数值模拟方法,研究氢燃料电池汽车在发生氢泄漏情况下,氢气在风洞内部的流动扩散规律与分布情况。当风洞模拟汽车以80 km/h行驶工况时,车底部泄漏的氢气紧贴着汽车表面向后移动进入汽车的尾流区,氢气浓度随着离汽车尾部距离的增加而降低。从收集口进入流道内的氢气集中在中、底部,具有明显的浓度梯度,经过风扇区后变得均匀;10 s后车底泄漏的氢气又重新回到试验段,与车底正在泄漏的氢气汇合,造成整个区域氢气浓度的持续升高。由于风洞流道拐角导流片的存在,流道内测的氢气浓度升高的更快。当风洞模拟汽车怠速工况时,泄漏的氢气大多在试验段内流动扩散,流道内几乎检测不到氢气。受试验段内气流扰动的影响,汽车两侧的氢气呈现出不对称分布,顶部的氢气集中在车左侧。根据数值模拟结果给出了氢浓度传感器的安装位置建议。
关键词
近年来,氢燃料电池汽车因其零污染排放、续航里程长、能量转换效率高等优点受到各国广泛关
目前,关于氢安全的研究主要集中在氢气的扩散与泄漏特性、燃烧与爆炸、产生超高压现象的分
(1) |
式中:Pcr为临界压力;Pa为外部环境大气压力;γ为绝热指数,氢气的γ为1.4。故求得氢气的临界压力为0.19 MPa。目前车用燃料电池电堆减压前的管道压力大于0.19 MPa,储氢罐的压力更是达到35 MPa或70 MPa,远高于氢泄漏临界压力值,且高压泄漏时形成欠膨胀射流。欠膨射流包括复杂的激波、马赫盘、外部压缩波、反射波等结构,常被简化成欠膨胀流动区、初始卷吸和加热区、射流发展区、射流充分发展区四个等效区
氢气以亚音速释放相关的研究较为成熟,在缓慢泄漏状态下,亚音速浮力射流的数学积分表达由Houf等
(2) |
(3) |
(4) |
(5) |
式中:圆形浮力射流从原点出发,与水平面夹角为θ0;S为射流轴坐标,与水平面夹角为θ;垂直于射流S轴的径向距离设为r坐标,在射流法向截面上绕S轴的方位角设为ϕ;u为局部时均射流速度;ρ为局部时均射流密度;ρ∞为周围空气密度;y为射流中氢的局部时均质量分数;y∞为周围空气中氢的质量分数;E为射流中环境流体夹带的局部速率。射流在已经建立流动区域内的氢浓度场、速度场和密度梯度沿径向的分布符合高斯概率分布,射流的轴向分布符合双曲线衰减规
轻质气体以一定的流量在密闭空间向上泄漏时,存在两种经典的气动模
前文描述的“填充盒”理论模型通常用于预测相对较小的密闭空间内泄漏引起的浓度积聚,但并不适用于描述地下停车场、隧道等大型密闭空间中氢浓度分布特性,因为在大型密闭空间中释放的气体混合物层中的氢气浓度分布是不均匀
(6) |
(7) |
式中: ch2、cair分别为氢气、空气的体积浓度;Dh2、Dair分别为氢气、空气的扩散系数。Hussein等
在模型验证方面,多数学者是基于前人的实验数据进行间接验证,而并未用自己的模型场景进行实验测试验
综上所述,目前针对复杂环境大空间内氢气泄漏扩散的研究以数值模拟为主,实验研究极少,而研究场景集中于地下停车场、车库等半密闭空间,未见风洞中氢泄漏扩散的相关研究。本文以上海地面交通工具风洞中心的整车热环境风洞为研究对象,重建三维风洞的全尺寸模型,基于计算流体动力学辅助的手段研究氢燃料电池汽车发生氢泄漏后氢气在风洞中的扩散规律以及分布情况,分析了汽车在80 km/h行驶和怠速两种工况下氢气在风洞内的时空演变特性,并给出了氢浓度传感器的安装位置建议。
本文研究氢燃料电池汽车在风洞测试过程中意外氢泄漏后氢气在风洞中的扩散行为以及浓度分布,重点在于风洞内部的流场构建,而对燃料电池汽车本身以及车载供氢系统进行简化。

图1 几何模型:(a) 风洞三维模型;(b) 氢泄漏位置
Fig.1 The geometry model: (a) 3D model of wind tunnel; (b) Position of hydrogen leakage
本研究使用商业软件STAR-CCM+对建模域进行网格划分,采用六面体元素的形式离散化,并在喷口射流区、尾流区、风扇区、拐角区等气动特性变化较大的区域进行加密,如

图2 网格总览和加密区
Fig.2 General view of numerical mesh and refine area

图3 (a)测量点位;(b) 网格无关性验证
Fig.3 (a) Measuring point position; (b) Grid independence validation
为了模拟氢气扩散流动和识别浓度聚集区域,应用质量守恒方程、动量守恒方程和组分方程。质量守恒方程和动量守恒方程如下:
(8) |
(9) |
式中:ρ为密度;t为时间;xi为笛卡尔坐标;u为速度分量;τij为应力张量分量;p为压力;最后一项是浮力项,其中gi是重力加速度矢量,ρ0是参考密度。
氢的组分方程
(10) |
式中:ym是氢气的质量分数;Fm,j为xj方向上的扩散通量,定义
(11) |
式中:αm为分子扩散系数,αt为湍流扩散系数,由湍流模型求得。一些研究表明,SST k-ω湍流模型在风洞CFD仿真方面的精度比k-ε模型更
(12) |
(13) |
式中:α为k-ω模型对应的常数;S为应变率;F1是混合函数;β*、β、σk、σω和σω2均为常数。
为了简化连续方程与动量方程中浮力项之间的耦合,在模拟中忽略了气体的可压缩性效
(14) |
式中:φ表示体积分数,由质量分数计算得到。忽略温度的影响,假定氢气和空气的密度在常温下为常数。简化成不可压缩气体是因为本文研究重点的是泄漏远场的风洞大范围全局的氢浓度变化,而不是泄漏口近场附近,对大范围全局的氢浓度长期演变有主要影响的是泄漏流量而不是泄漏速
本文所建立模型的环境压力为标准大气压101 kPa,环境温度恒定为300 K。风扇运转采用参考坐标设定,运转稳定后试验段喷口的出口流速为80 km/h,为风洞测试常用的风速。风洞压力平衡口与外界标准大气压相连,应用压力出口边界。本文研究的氢气自身高扩散特性、低密度上浮特性在风洞高速气流裹挟下的特殊行为表现,为了简化模型以及限定研究边界,忽略风洞的尾气排出以及新风进入。首先经过稳态计算至残差小于1
本文设置氢气在燃料电池汽车底部以0.003 kg/s流量恒定释放,已足够体现扩散规律细节,泄漏量与Huang等
由于大型风洞进行氢气实验验证较为困难,故通过相同的数学模型模拟,以Malakhov等

图4 模拟与试验结果对比
Fig.4 Comparison of simulation and test results
为了更好地研究风洞内氢气的浓度分布情况,共设置18个氢浓度监测点位(见

图5 风洞氢浓度监测点位置
Fig.5 Position of monitoring point for hydrogen concentration in wind tunnel
监测点1 (X,Y,Z) | 监测点2 (X,Y,Z) | 监测点3 (X,Y,Z) | 监测点4 (X,Y,Z) | 监测点5 (X,Y,Z) |
---|---|---|---|---|
(14.47, 0, 2.25) | (19.13, -6.46, 2.25) | (15.08, -12.83, 2.25) | (-14.53, -12.83, 2.25) | (-18.99, -6.43, 2.25) |
监测点6 (X,Y,Z) | 监测点7 (X,Y,Z) | 监测点8 (X,Y,Z) | 监测点9 (X,Y,Z) | 监测点10 (X,Y,Z) |
(-11.32, 0, 2.25) | (0, 0, 1.10) | (-6.64, 5.96, 6.02) | (-6.64, -5.96, 6.02) | (4.00, 5.96, 6.02) |
监测点11 (X,Y,Z) | 监测点12 (X,Y,Z) | 监测点13(X,Y,Z) | 监测点14 (X,Y,Z) | 监测点15 (X,Y,Z) |
(4.00, 0, 6.02) | (4.00, -5.96, 6.02) | (14.08, 5.96, 8.96) | (14.08, 0. 8.96) | (14.08, -5.96, 8.96) |
监测点16 (X,Y,Z) | 监测点17 (X,Y,Z) | 监测点18 (X,Y,Z) | ||
(22.10, 5.96, 8.96) | (22.10, 0, 8.96) | (22.10, -5.96, 8.96) |
风洞的车辆高速行驶工况是通过车轮底部的传动转鼓和车前方喷口高速射流实现的,风洞喷口出风模式下的喷口平均风速达80 km/h。

图6 XZ截面的氢体积分数云图(Y=0 m)
Fig.6 Hydrogen volume fraction in XZ section (Y=0m)

图7 XY截面的氢体积分数(Z=0.62 m)
Fig.7 Hydrogen volume fraction in XY section (Z=0.62m)

图8 风洞不同位置氢体积分数(喷口出风模式)
Fig.8 Hydrogen volume fractions at different locations in wind tunnel (nozzle out mode)
一般来说,人员活动区域仅在试验段,并不包括风洞的庞大流道结构。事实上,流道内的高速风机、加热器、电缆等设备器件极容易成为氢气的引爆点,了解氢在风洞流道内部的流动扩散情况十分有必要。在Z=0.62 m处截取XY平面,分别作t=1 s、t=10 s、t=23 s和t=60 s的氢气体积分数云图,为了方便观察规律,云图分辨率最大氢浓度设为2%,如
为了更精确的分析氢气在整个泄漏过程中的扩散规律,以风洞18处监测点的数据作折线图,各监测点位置与坐标详见
由

图9 喷口出风模式下XZ截面矢量图(Y=0 m)和收集口
Fig.9 XZ section (Y=0 m) vectors in nozzle out mode and collecter
在模拟汽车的怠速模式下,风洞喷口关闭,气流从位于喷口顶部的2个旁通口流出,流经阳光模拟器进入收集口,从而绕过汽车,如

图10 旁通出风模式下XZ截面(Y=0 m)矢量图和旁通口
Fig.10 XZ section (Y=0 m) vectors in bypass out mode and bypass outlet

图11 XZ截面(Y=0 m)的氢体积分数
Fig.11 Hydrogen volume fraction in XZ section (Y=0 m)

图12 XY截面(Z=0.62 m)的氢体积分数
Fig.12 Hydrogen volume fraction in XY section (Z=0.62 m)
将18处监测点的数据做成

图13 风洞不同位置氢体积分数(旁通出风模式)
Fig.13 Hydrogen volume fractions at different locations in wind tunnel (bypass out mode)
考虑到氢气密度小,在空气中浮力较大,极易在顶部聚集,而试验段是测试人员频繁进出活动的场所,且顶部高温的阳光模拟器可能存在裸露电线,所以怠速模式下研究氢气在试验段顶部流动聚集的情况十分有必要。将试验段顶部的面作为监测面,怠速模式下分别取20 s、60 s时刻作氢气体积浓度分布图,如

图14 试验段顶部氢体积分数(怠速模式)
Fig.14 Hydrogen volume fraction at the top of test section (idle mode)
根据前文所讨论的氢气在风洞不同工作模式下的流动扩散规律,发现氢气聚集情况不同于传统的静态大空间,在仅仅在顶部设置氢浓度传感器的方式无法满足风洞特殊流场的预警需求。
(1) 行驶模式(喷口出风):由
(2) 怠速模式(旁通出风):不同于喷口出风,怠速模式下在车前方布置氢气浓度传感器效果最好,因为内部的流场会推动气流往车前移动,如
本文重建了上海地面交通工具风洞中心的整车热环境风洞模型,通过数值模拟的方法分析了风洞测试汽车行驶工况和怠速工况两种情况下的氢气扩散行为以及氢浓度的时空演变过程,主要结论如下:
(1) 在汽车行驶工况下,受喷口横向高速气流的影响,氢气紧贴着汽车表面移动至车尾部脱离,氢气浓度随着离汽车尾部距离的增加而降低;流经风扇之前的氢气流具有明显的浓度梯度,但氢气经过风扇区受风扇高速旋转扰动的影响,会变得分布均匀;泄漏开始后约10 s氢气绕完风洞一圈,与车底正在泄漏的氢气汇合,造成整个区域氢气浓度的持续升高。氢气在流道的流动过程中,流道内侧的氢浓度高于外侧。
(2) 在汽车怠速工况下,泄漏的氢气大多在试验段内流动扩散,流道内几乎检测不到氢气。试验段内尽管气流的流速很小,但流动并不规律,汽车底部泄漏的氢气被气流搅乱,在车的两侧呈现出不对称分布。试验段内车身附近的氢气首先在左前范围聚集,然后逐渐向车右后方部分扩散;试验段顶部的氢气则倾向于在车左上方的角落聚集。
(3) 汽车行驶工况下的氢浓度传感器应考虑在车后尾流区布置,若在流道中布置应在不同高度形成的阵列,以应对氢气浓度的分层;在怠速工况,受风洞流场的影响,氢浓度传感器应优先在车前方两侧布置,而试验段顶部的氢浓度传感器难以起到及时预警效果。
(4) 氢气在车底以0.003 kg/s的速率泄漏60 s后,无论在汽车行驶工况还是怠速工况,本文所设监测点的氢气体积浓度均未达4%的可燃下限,达到4%的高浓度范围仅局限在车底泄漏出口很小的范围内,这既有风洞体积庞大、气流促进稀释的客观因素,也有本案例设置的泄漏时间、泄漏量的主观影响因素。未来需要更多的研究,识别不同氢泄放流量、时间、泄放角度下的氢浓度聚集特征以保障风洞的安全。
参考文献
RASUL M G, HAZRAT M A, SATTAR M A, et al. The future of hydrogen: Challenges on production, storage and applications[J]. Energy Conversion and Management, 2022, 272: 116326. [百度学术]
AMINUDIN M A, KAMARUDIN S K, LIM B H, et al. An overview: Current progress on hydrogen fuel cell vehicles[J]. International Journal of Hydrogen Energy, 2023, 48(11): 4371. [百度学术]
ABOHAMZEH E, SALEHI F, SHEIKHOLESLAMI M, et al. Review of hydrogen safety during storage, transmission, and applications processes[J]. Journal of Loss Prevention in the Process Industries, 2021, 72(3):104569. [百度学术]
赵丰,孙津鸿,牟连嵩,等. 汽车环境风洞试验能力综述[J]. 装备环境工程,2021,18(10):104. [百度学术]
Zhao F, Sun J H, MU L S, et al. Introduction for the test ability of automotive CWT[J]. Equipment Environmental Engineering, 2021,18(10):104. [百度学术]
YANG F, WANG T, DENG X, et al. Review on hydrogen safety issues: Incident statistics, hydrogen diffusion, and detonation process[J]. International Journal of Hydrogen Energy, 2021, 46(61): 31467. [百度学术]
LI H, CAO X, LIU Y, et al. Safety of hydrogen storage and transportation: An overview on mechanisms, techniques, and challenges[J]. Energy Reports, 2022, 8: 6258. [百度学术]
CHOI J, HUR N, KANG S, et al. A CFD simulation of hydrogen dispersion for the hydrogen leakage from a fuel cell vehicle in an underground parking garage[J]. International Journal of Hydrogen Energy, 2013, 38(19): 8084. [百度学术]
XIN J, DUAN Q, JIN K, et al. A reduced-scale experimental study of dispersion characteristics of hydrogen leakage in an underground parking garage[J]. International Journal of Hydrogen Energy, 2023, 48(44): 16936. [百度学术]
ZHAO M, HUANG T, LIU C, et al. Leak localization using distributed sensors and machine learning for hydrogen releases from a fuel cell vehicle in a parking garage[J]. International Journal of Hydrogen Energy, 2020, 46(1): 1420. [百度学术]
李方语. 地下车库氢气泄漏扩散及气流组织研究[D].石家庄: 石家庄铁道大学, 2022. [百度学术]
LI F Y. Study on hydrogen leakage diffusion and air distribution in underground garage[D]. Shijiazhuang: Shijiazhuang Tiedao University, 2022. [百度学术]
LI Y, JIANG J, YU Y, et al. Numerical simulation of dispersion and distribution behaviors of hydrogen leakage in the garage with a crossbeam[J]. Journal of the Society for Computer Simulation, 2019, 95(12): 1229. [百度学术]
朱浩然,张欣,田颖,等.隧道中车载供氢系统液氢泄漏扩散过程分析[J].中国汽车,2022(08):34. [百度学术]
ZHU H R, ZHANG X, TIAN Y, et al. Analysis of liquid hydrogen leakage and diffusion process of vehicle mounted hydrogen supply system in tunnel[J]. China Auto, 2022(8):34. [百度学术]
ZHANG J, PAN Y, NI Y, et al. Computational fluid dynamics simulations of hydrogen jet fires inside a tunnel[C]//Science and Engineering Research Center. Proceedings of 2019 2nd International Conference on Sustainable Energy, Environment and Information Engineering(SEEIE 2019.PressAtlantis,2019:228. DOI:10.2991/seeie-19.2019.53. [百度学术]
QIAN J, LI X, GAO Z, et al. A numerical study of hydrogen leakage and diffusion in a hydrogen refueling station[J]. International Journal of Hydrogen Energy, 2020, 45(28): 14428. [百度学术]
LIU K, HE C, YU Y, at al. A study of hydrogen leak and explosion in different regions of a hydrogen refueling station[J]. International Journal of Hydrogen Energy, 2023, 48(37): 14112. [百度学术]
余永哲. 加氢站高压氢气意外泄漏与扩散的数值模拟研究[D].青岛: 青岛科技大学, 2023. [百度学术]
YU Y Z. A numerical study of the accidental leakage and diffusion law of high pressure hydrogen in hydrogen refueling station[D]. Qingdao: Qingdao University of Science and Technology, 2023. [百度学术]
黄腾. 大型地下车库内氢气泄漏与扩散研究[D].济南: 山东大学, 2022. [百度学术]
HUANG T. Study of hydrogen leakage and dispersion in a large underground parking garage[D]. Jinan: Shandong University, 2022. [百度学术]
闫兴清,戴行涛,喻健良, 等.高压氢气泄漏射流研究进展[J].化工进展,2023,42(3):1118. [百度学术]
YAN Xingqing, DAI Xingtao, YU Jianliang, et al. Research progress of high-pressure hydrogen leakage and jet flow[J]. Chemical Industry and Engineering Progress, 2023,42(3):1118. [百度学术]
项玉霞. 高压欠膨胀氢气泄漏与扩散模型及试验研究[D].太原: 太原理工大学, 2022. [百度学术]
XIANG Y X. Leakage and diffusion model and test research of high pressure underexpanded hydrogen[D]. Taiyuan: Taiyuan University of Technology, 2022. [百度学术]
BIRCH A D, BROWN D R, DODSON M G, et al. The structure and concentration decay of high pressure jets of natural gas[J]. Combust Sci Technol 1984;36:249. [百度学术]
BIRCH A D, HUGHES D J, SWAFFIELD F. Velocity decay of high pressure jets[J]. Combust Sci Technol 1987;52:161. [百度学术]
EWAN B C R, MOODIE K. Structure and velocity measurements in underexpanded jets[J]. Combust Sci Technol 1986;45:275. [百度学术]
SCHEFER R W, HOUFF W G, WILLIAMS T C, et al. Characterization of high-pressure, underexpanded hydrogen-jet flames[J]. International Journal of Hydrogen Energy, 2007;32:2081. [百度学术]
MOLKOV V, MAKAROV D, BRAGIN M. Physics and modelling of under-expanded jets and hydrogen dispersion in atmosphere[J]. Institute of Problems of Chemical Physics Russian Academy of Sciences, 2009:146. https://www.researchgate.net/publication/285667636. [百度学术]
HOUF W, SCHEFER R. Analytical and experimental investigation of small-scale unintended releases of hydrogen[J]. International Journal of Hydrogen Energy, 2008, 33(4): 1435. [百度学术]
PITTS W M. Effects of global density ratio on the centerline mixing behavior of axisymmetric turbulent jets[J]. Exp Fluids 1991, 11: 125. [百度学术]
GEBHART B, HILDER D S, KELLEHER M. The diffusion of turbulent buoyant jets[J]. Advances in Heat Transfer, 1984, 16: 1. [百度学术]
CHEN C, RODI W. Vertical turbulent buoyant jets-a review of experimental data[M]. Oxford: Pergamon Press; 1980. [百度学术]
BAINES W. D, TURNER J S. Turbulent buoyant convection from a source in a confined region[J]. Journal of Fluid Mechanics, 1969, 37: 51. [百度学术]
DENISENKO V P, KIRILLOV I A, KOROBTSEV S V, et al. Hydrogen-air explosive envelope behavior in confined space at different leak velocities[C]//Third International Conference on Hydrogen Safety, 2009. https://conference.ing.unipi.it/ichs2009/images/stories/papers/194.pdf. [百度学术]
SHU Z, LIANG W, ZHENG X, et al. Dispersion characteristics of hydrogen leakage: comparing the prediction model with the experiment[J]. Energy, 2021, 236(14):121420. [百度学术]
LI Y, HOU X, WANG C, et al. Modeling and analysis of hydrogen diffusion in an enclosed fuel cell vehicle with obstacles[J]. International Journal of Hydrogen Energy, 2022, 47(9): 5745. [百度学术]
焦明宇. 燃料电池卡车供氢系统氢气泄漏扩散仿真分析研究[D].北京: 北京交通大学, 2022. [百度学术]
JIAO M Y. Research on simulation analysis of hydrogen leakage and diffusion in hydrogen supply system of fuel cell truck[D]. Beijing: Beijing Jiaotong University, 2022. [百度学术]
HUSSEIN H, BRENNAN S, MOLKOV V. Dispersion of hydrogen release in a naturally ventilated covered car park[J]. International Journal of Hydrogen Energy, 2020, 45(43):23882. [百度学术]
PATEL P, BAALISAMPANG T, ARZAGHI E, et al. Computational analysis of the hydrogen dispersion in semi-confined spaces[J]. Process Safety and Environmental Protection, 2023, 176: 475. [百度学术]
LEE J, CHO S, CHO H, et al. CFD modeling on natural and forced ventilation during hydrogen leaks in a pressure regulator process of a residential area[J]. Process Safety and Environmental Protection, 2022, 161:436. [百度学术]
HUANG T, ZHAO M, BA Q, et al. Modeling of hydrogen dispersion from hydrogen fuel cell vehicles in an underground parking garage[J]. International Journal of Hydrogen Energy, 2022, 47(1): 686. [百度学术]
GIANNISSI S G, TOLIAS I C, MELIDEO D, et al. On the CFD modelling of hydrogen dispersion at low-Reynolds number release in closed facility[J]. International Journal of Hydrogen Energy, 2021, 46(57): 29745. [百度学术]
CHEN M, ZHAO M, HUANG T, et al. Measurements of helium distributions in a scaled-down parking garage model for unintended releases from a fuel cell vehicle[J]. International Journal of Hydrogen Energy, 2020, 45(41): 22166. [百度学术]
AHN H J, JUNG J H, HUR N, et al. The numerical simulation of hydrogen diffusion for the hydrogen leakage in tunnel[J]. Journal of Computational Fluids Engineering, 2010, 15(2): 47. [百度学术]
刘哲恺,梁德慧,付乐天,等. 基于CFD仿真的二方程湍流模型选取与风洞实验结果相关性分析[C]// 中国汽车工程学会年会论文集. 上海:中国汽车工程学, 2020: 6. [百度学术]
LIU Z K, LIANG D H, FU L T, et al. Correlational analysis between turbulence models based on CFD simulation and wind tunnel experiment results[C]// Proceedings of the Annual Conference of the Chinese Society of Automotive Engineers. Shanghai: Chinese Society of Automotive Engineers, 2020: 6. [百度学术]
杨朋瑞,王铁进. 汽车风洞流场控制方法的CFD研究[C]//2019年全国工业流体力学会议论文集. 北京: 中国力学学会流体力学专业委员会, 2019: 7. [百度学术]
YANG P R, WANG T J. CFD research on flow field control method of automobile wind tunnel[C]// Proceedings of the 2019 National Conference on Industrial Fluid Dynamics. Beijing: Fluid Mechanics Professional Committee of the Chinese Society of Mechanics, 2019: 7. [百度学术]
MALAKHOV A A, AVDEENKOV A V, DU TOIT M H, et al. CFD simulation and experimental study of a hydrogen leak in a semi-closed space with the purpose of risk mitigation[J]. International Journal of Hydrogen Energy, 45(15): 9231. [百度学术]