摘要
氨作为一种绿色储氢燃料具有巨大的应用潜力,但液氨沸点低,其在标准大气压下沸点仅为239.7 K,极易发生闪沸。本文在欧拉-拉格朗日框架下,对液氨燃料进行数值模拟,研究其在不同过热度、喷射压力、燃料温度和环境温度下的闪沸喷雾的形态、贯穿距、粒径和氨蒸汽质量分数等特性。结果表明:液氨过热度越大,其喷雾的贯穿距越大,喷雾前端坍缩发生越明显;喷射压力越大,液氨喷雾坍缩先增强后减弱,喷雾的粒径越小;液氨喷雾特征受环境温度影响较弱,在低燃料温度下,喷雾的特征受过热度的影响小,相反,高燃料温度下氨蒸汽质量分数随着温度的升高而增加。
氨作为一种含氢的零碳燃料,在碳中和目标中发挥重要作
关于氨的混合燃料的燃烧,学者们进行了大量的研究。Han等
关于液氨的直接喷射,近年开始受到广泛关注。Okafor等
本文基于欧拉-拉格朗日方法进行喷雾模拟,采用雷诺平均纳维-斯托克斯方程(RANS)和气体内能输运方程进行气体相建模,采用拉格朗日粒子追踪方法(LPT)对液滴进行建模,并基于CFD软件CONVERGE进行模型求解分析,以确定喷射压力、过热度、燃油温度和环境温度对液氨闪沸喷雾特性的影响,以期为液氨在发动机中的应用提供数据支撑。
连续方程:连续方程表示单位时间内流入和流出微元控制体的流体质量 之差,等于控制体内质量的增加(表现为密度的变化),如
(1) |
式中:ρ为密度;t为时间;ui为速度矢量的分量,xi为方向矢量的分量,S为源相。
动量方程:动量方程表示微元控制体中流体的动量随时间的变化率与控制体所受到各种外力的合力相等,如
(2) |
(3) |
式中:P为压力,为粘性应力张量,μ为动力粘度。
能量方程如
(4) |
式中:e为比内能;T为温度;K为流体传热系数;D为质量扩散系数;hm为组分m的焓值;Ym为组分m的质量分数。
采用KH-RT模型进行破碎雾化求解,认为在燃油喷射的过程中,液滴的破碎是在一定的条件下由 KH机制与RT机制共同作用下发生的,并通过液核破碎长度Lb来决定哪种机制占据主导。液核破碎长度Lb的定义如
(5) |
式中:为液体密度,为气体密度,d0为喷孔出口直径。
根据Li等
本文对过热度参照文献[
条件参数 | 参数值 |
---|---|
燃料 | 氨 |
环境气体 | 氮气 |
燃料喷射压力P/MPa | 5 ~ 30 |
燃料温度T/K | 243 ~ 338 |
定容弹压力Pa/bar | 1.0 ~ 29.5 |
定容弹温度Ta/K | 288 ~ 328 |
为了验证模型的有效性与准确性,将仿真模型计算结果与实验结

图1 氨喷雾贯穿距模拟与实验结果对比(t=0.1 ms)
Fig.1 Comparison of the ammonia spray penetration between experimental and simulation (t=0.1 ms)

图2 氨喷雾贯穿距随时间变化的模拟与实验结果对比
Fig.2 Comparison of simulation and experimental results for ammonia spray penetration distance with time

图 3 氨喷雾贯穿距随喷射压力的变化
Fig.3 Ammonia spray penetration at different pressures

图 4 氨喷雾SMD随喷射压力的变化
Fig.4 Ammonia spray SMD at different pressures

图 5 不同喷射压力下氨蒸汽质量分数随时间的变化
Fig.5 Ammonia vapor mass fraction at different pressures

图 6 氨喷雾贯穿距随燃料温度的变化
Fig.6 Spray penetration at different fuel temperatures

图7 氨喷雾SMD随燃料温度的变化
Fig.7 Spray SMD at different fuel temperatures

图8 不同燃料温度下氨蒸汽质量分数随时间的变化
Fig.8 Ammonia vapor mass fraction at different fuel temperatures

图9 氨喷雾贯穿距随环境温度的变化
Fig.9 Spray penetration at different ambient temperatures

图 10 氨喷雾SMD随环境温度的变化
Fig.10 Spray SMD at different ambient temperatures

图11 不同的过热度下液氨喷雾形态(P=20 MPa, T=308 K, Ta=298 K, t=0.01 ms)
Fig.11 Spray morphology at different superheat degree

图12 不同的喷射压力下液氨喷雾形态(RP=5, T=308 K, Ta=298 K, t=0.01 ms)
Fig.12 Spray morphology at different injection pressures
(1) 喷射压力越大,液氨闪沸喷雾的贯穿距越大,粒径越小,氨蒸汽的质量分数越大,这是因为过热状态下,粒径越小越易蒸发。过热度增大,闪沸喷雾贯穿距增大,粒径在小过热度范围内减小。
(2) 燃油温度增大,贯穿距减小,氨蒸汽质量分数增大。燃油温度小于环境温度时,过热度越大,粒径越大,由于小颗粒直接蒸发。燃油温度大于环境温度时,过热度越大,粒径越小。
(3) 环境温度改变,液氨闪沸喷雾贯穿距变化很小,粒径变化较小,环境温度对液氨喷雾特性影响微弱。增大喷射压力和适当提高过热度是促进液氨雾化的有效手段。
参考文献
DIMITRIOU P, JAVAID R. A review of ammonia as a compression ignition engine fuel[J]. International Journal of Hydrogen Energy, 2020, 45(11): 7098. [百度学术]
VALERA-MEDINA A, AMER-HATEM F, AZAD A K, et al. Review on ammonia as a potential fuel: from synthesis to economics[J]. Energy & Fuels, 2021, 35(9): 6964. [百度学术]
MACHAJ K, KUPECKI J, MALECHA Z, et al. Ammonia as a potential marine fuel: a review[J]. Energy Strategy Reviews, 2022, 44: 100926. [百度学术]
AYVALI T, TSANG S C E, VAN VRIJALDENHOVEN T. The position of ammonia in decarbonizing maritime industry: an overview and perspectives: Part II costs, safety and environmental performance and the future prospects for ammonia in shipping[J]. Johnson Matthey Technology Review, 2021, 65(2): 291. [百度学术]
LHUILLIER C, BREQUIGNY P, CONTINO F, et al. Experimental study on ammonia/hydrogen/air combustion in spark ignition engine conditions[J]. Fuel, 2020, 269(1): 117448. [百度学术]
YOUSEFI A, GUO H, DEV S, et al. Effects of ammonia energy fraction and diesel injection timing on combustion and emissions of an ammonia/diesel dual-fuel engine[J]. Fuel, 2022, 314: 122723. [百度学术]
REITER A J, KONG S. Combustion and emissions characteristics of compression-ignition engine using dual ammonia-diesel fuel[J]. Fuel, 2011, 90(1): 87. [百度学术]
NOVELLA R, PASTOR J, GOMEZ-SORIANO J, et al. Challenges and directions of using ammonia as an alternative fuel for internal combustion engines[Z]. Paris: SAE International, 2023. [百度学术]
XINLU H, ZHIHUA W, COSTA M, et al. Experimental and kinetic modeling study of laminar burning velocities of NH3/air, NH3/H2/air, NH3/CO/air and NH3/CH4/air premixed flames[J]. Combustion and Flame, 2019, 206: 214. [百度学术]
VALERA-MEDINA A, PUGH D G, MARSH P, et al. Preliminary study on lean premixed combustion of ammonia-hydrogen for swirling gas turbine combustors[J]. International Journal of Hydrogen Energy, 2017, 42(38): 24495. [百度学术]
PACHECO G P, ROCHA R C, FRANCO M C, et al. Experimental and kinetic investigation of stoichiometric to rich NH3/H2/Air flames in a swirl and bluff-body stabilized burner[J]. Energy and Fuels, 2021, 35(9): 7201. [百度学术]
LI M, ZHU D, HE X, et al. Experimental and kinetic modeling study on auto-ignition properties of ammonia/ethanol blends at intermediate temperatures and high pressures[J]. Proceedings of the Combustion Institute, 2023, 39(1): 511. [百度学术]
ZHIHUA W, XINLU H, YONG H, et al. Experimental and kinetic study on the laminar burning velocities of NH3 mixing with CH3OH and C2H5OH in premixed flames[J]. Combustion and Flame, 2021, 229: 224. [百度学术]
GROSS C W, KONG S. Performance characteristics of a compression-ignition engine using direct-injection ammonia-DME mixtures[J]. Fuel, 2013, 103: 1069. [百度学术]
RYU K, ZACHARAKIS-JUTZ G E, KONG S. Performance characteristics of compression-ignition engine using high concentration of ammonia mixed with dimethyl ether[J]. Applied Energy, 2014, 113: 488. [百度学术]
LI T, ZHOU X, WANG N, et al. A comparison between low- and high-pressure injection dual-fuel modes of diesel-pilot-ignition ammonia combustion engines[J]. Journal of the Energy Institute, 2022, 102: 362. [百度学术]
OKAFOR E C, YAMASHITA H, HAYAKAWA A, et al. Flame stability and emissions characteristics of liquid ammonia spray co-fired with methane in a single stage swirl combustor[J]. Fuel, 2021, 287: 119433. [百度学术]
PELÉ R, MOUNAÏM-ROUSSELLE C, BRÉQUIGNY P, et al. First study on ammonia spray characteristics with a current GDI engine injector[J]. Fuels, 2021, 2(3): 253. [百度学术]
LI S, LI T, WANG N, et al. An investigation on near-field and far-field characteristics of superheated ammonia spray[J]. Fuel, 2022, 324: 124683. [百度学术]
COLSON S, YAMASHITA H, OKU K, et al. Study on the effect of injection temperature and nozzle geometry on the flashing transition of liquid ammonia spray[J]. Fuel, 2023, 348: 128612. [百度学术]
ZHANG Y, XU L, ZHU Y, et al. Numerical study on liquid ammonia direct injection spray characteristics under engine-relevant conditions[J]. Applied Energy, 2023, 334: 120680. [百度学术]
AN Z, XING J, KUROSE R. Numerical study on the phase change and spray characteristics of liquid ammonia flash spray[J]. Fuel, 2023, 345. [百度学术]
HAN Z Y, REITZ R D. Turbulence modeling of internal combustion engines using RNG κ-ε models[J]. Combustion Science and Technology, 1995, 106(4/5/6): 267. [百度学术]