Vol. 38 No. 8 Aug. 2010

文章编号: 0253-374X(2010)08-1210-05

DOI:10.3969/j.issn.0253-374x.2010.08.020

空位缺陷对单层石墨烯薄膜拉伸力学性能的影响

韩同伟^{1,2},贺鹏飞¹,王 健³,吴艾辉¹

(1.同济大学 航空航天与力学学院,上海 200092; 2.江苏大学 理学院,江苏 镇江 212013;3.贝尔法斯特女王大学 机械与宇航工程学院,贝尔法斯特 BT9 5AH)

摘要:采用 Tersoff 势对完美的和含空位缺陷的单层石墨烯薄 膜的单向拉伸力学性能进行了分子动力学模拟,分别研究了 单个单原子空位缺陷和单个双原子空位缺陷对扶手椅型和锯 齿型石墨烯拉伸力学性能及变形机制的影响.研究结果表明, 单原子空位缺陷和双原子空位缺陷对扶手椅型和锯齿型石墨 烯薄膜的杨氏模量没有影响,但在一定程度上降低了拉伸强 度和拉伸极限应变.单原子空位缺陷和双原子空位缺陷使拉 伸强度降低幅度最高达 8.10%和 6.41%,并大幅度降低极限 应变.缺陷对石墨烯的拉伸变形破坏机制也有一定的影响.在 外载作用下,新的缺陷的萌生位置均出现在空位缺陷附近.

关键词:空位缺陷;单层石墨烯薄膜;拉伸力学性能;分子动力学
 中图分类号:TB 332
 文献标识码:A

Effect of Vacancy Defects on Tensile Mechanical

Properties of Single Graphene Sheets

HAN Tongwei^{1,2}, HE Pengfei¹, WANG Jian³, WU Aihui¹ (1. College of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, China; 2. Faculty of Science, Jiangsu University, Zhenjiang 212013, China; 3. School of Mechanical and Aerospace Engineering, The Queen's University of Belfast, Belfast BT9 5AH, UK)

Abstract: The effect of single one-and two-atom vacancy defects on the tensile mechanical properties and deformation mechanism of the zigzag and armchair single graphene sheets was investigated using molecular dynamics simulation with Tersoff bond-order interatomic potential. The numerical simulation results show that there is no effect on the Young's modulus of the graphene due to the presence of vocancy defects, but there is a reduction in the tensile strength and failure strain. One-and two-atom vacancy defects are observed to reduce tensile stresses by as much as 8.10% and 6.41%, respectively, and markedly reduce failure strains. The defects also affect the deformation mechanism of graphene sheets under tention. In most cases, defects serve as nucleation site for fracture.

Key words: vacancy defects; single graphene sheet; tensile mechanical properties; molecular dynamics

石墨烯(Graphene)^[1-2],又称二维石墨,是继富 勒烯和碳纳米管之后发现的又一种新型低维碳材 料,近年来迅速成为材料科学和凝聚态物理领域最 为活跃的研究前沿[3],被认为是具有战略意义的新 材料.目前对于石墨烯的研究大部分基于石墨烯为 完美的由单层 sp² 碳原子组成的六方蜂巢状二维结 构,并没有考虑其中各种缺陷的影响.然而,由于制 造工艺的限制,实际制备中几乎无法获得完美的石 墨烯,石墨烯中不可避免地含有各种缺陷^[4-5],例如 空位缺陷(包括单原子空位缺陷和双原子空位缺 陷)、SW(Stone-Wales)拓扑缺陷、增原子缺陷和其他 非拓扑结构缺陷等,其中空位缺陷为石墨烯中最为 典型的能稳定存在的点缺陷.这些缺陷对石墨烯的 力学变形具有一定程度的影响,因此,研究缺陷对石 墨烯基础力学性能的影响具有重要的理论意义和应 用价值.虽然国内外学者对含缺陷碳纳米管的力学 性能进行了一定的研究[6-7],但关于缺陷对二维石 墨烯力学性能的影响尚未见相关报道.

本文采用分子动力学方法,对完美的和含空位 缺陷的扶手椅型和锯齿型单层石墨烯薄膜的拉伸力 学性能进行了计算机数值模拟,研究了空位缺陷对 石墨烯基本拉伸力学性能和变形机制的影响,为石 墨烯在微/纳米机电系统(M/NEMS)和纳米复合材 料领域的应用提供一定的理论依据.

1 物理模型及模拟方法

1.1 单层石墨烯薄膜几何模型

收稿日期:2009-05-15

基金项目:上海市科委基础研究重点项目(09JC1414400);江苏大学高级人才科研启动基金项目(10JDG034)

作者简介:韩同伟(1979—),男,工学博士,主要研究方向为计算纳米力学. E-mail:6twhan@tongji.edu.cn;twhan@ujs.edu.cn

贺鹏飞(1962—),男,教授,工学博士,博士生导师,主要研究方向为复合材料力学. E-mail:ph232@tongji.edu.cn

完美的石墨烯是由单层六角元胞碳原子构成的 蜂窝状二维晶体,其中碳一碳键长大约为 0.142 nm,模拟中选用的扶手椅型和锯齿型石墨烯的结构 如图 1 所示.在扶手椅型和锯齿型石墨烯薄膜大约 中部位置分别布置一个单原子缺陷和两种类型的双 原子缺陷,示意图如图 2 所示.本文采用的模型一共 为 8 个,模型尺寸相同,分别为 19.680 0 nm × 19.883 9 nm,19.883 9 nm×19.680 0 nm.原子个数 如下:完美的石墨烯为 15 134,单原子空位缺陷和双 原子空位缺陷石墨烯分别为 15 133 和 15 132.

Fig.1 Geometric models of single graphene sheet(unit:nm)

single graphene sheets

1.2 模拟方法及过程

在纳米尺度下,分子动力学方法是材料科学研 究中不可或缺的重要研究手段,被广泛地用来研究 纳米材料的力学性能及其变形机理.分子动力学计 算的一个关键问题是原子势函数的选取,它直接决 定着模拟的精度.适用于共价键体系使用最广泛的 势函数为 Tersoff 势函数^[8-9],它为三体势函数,可 以很好地模拟碳一碳共价键的各种特性,包括键长、 键角、键能、晶格常数和键的断裂重组等动态行为, 能够较真实地反映碳元素所构成固态材料的物理性 质.因此,本文在进行分子动力学模拟时选择 Tersoff 作用势函数.Tersoff 原子间相互作用势函数 表示为

$$E = \sum_{i} E_{i} = \frac{1}{2} \sum_{i \neq j} V_{ij}$$
(1)

式中: E 是体系的总能量; V_{ij} 为 ij 原子间的成键能量. 其中, $V_{ij} = f_c(r_{ij}) [f_R(r_{ij}) + b_{ij}f_A(r_{ij})], f_A$ 和 f_R 分别是对势的吸引项和排斥项; f_c 是光滑截断函数; b_{ij} 为键序函数, 其具体形式见文献[8 - 9]. Tersoff 势形式上象一个二体势, 实际上是一个多体势, 因为系数 b_{ij} 并非是一个常数, 而是一个依赖于i, j 原子的位置, 并与i 粒子周围其他的近邻原子有关的多体函数项.

系统运动方程求解采用速度形式的 Verlet 算法^[10]形式,如下所示.

$$r(t + \Delta t) = r(t) + v(t)\Delta t + a(t)\Delta t^{2}/2$$

$$v(t + \Delta t/2) = v(t) + a(t)\Delta t/2$$

$$a(t + \Delta t) = -\nabla E(r(t + \Delta t))/m$$

$$v(t + \Delta t) = v(t + \Delta t/2) +$$

$$a(t + \Delta t)\Delta t/2$$
(2)

模型中 C 原子的质量取 12.0 1u. 在模拟温度 0 K,应变率 1×10⁹ s⁻¹条件下,分别对完美的及含有 原子空位缺陷的扶手椅型和锯齿型单层石墨烯薄膜 进行拉伸模拟.模拟过程如下:纳米薄膜在 x 方向控 制为自由边界,在 y 方向施加周期性边界条件.采用 Nose-Hoover 方法^[10]进行等温调节,时间步长取 1 fs.模拟过程先对初始构型进行无约束弛豫,使系统 处于能量最低的平衡状态.然后对驰豫过的纳米薄 膜沿 y 向均匀拉伸.拉伸时固定纳米薄膜一端一层 碳环,对纳米薄膜施加均匀拉伸应变,每次施加 0.001的拉伸应变,然后驰豫 1 000 步,驰豫时间为 1.0×10⁻¹² s.重复此拉伸、驰豫过程,直至纳米薄膜 被拉伸破坏.

2 计算结果及分析

2.1 空位缺陷对石墨烯力学性能的影响

图 3 绘出了完美的、含有单原子空位缺陷和两 种类型双原子空位缺陷的扶手椅型和锯齿型石墨烯 薄膜的拉伸应力一应变关系曲线,其中纵轴为纳米 薄膜原子的 y向(拉伸方向)应力的平均值.需要指 出的是,由于石墨烯薄膜是由单层碳原子构成,必须 对石墨烯的有效厚度给出合适的定义,计算应力才 有意义.本文在计算应力时石墨烯薄膜的有效厚度 取石墨晶体的层间距 0.335 nm^[11-13].

由应力一应变曲线可知,各种空位缺陷的存在

对扶手椅型和锯齿型石墨烯薄膜的杨氏模量基本没 有影响,经对初始段曲线最小二乘法拟合,杨氏模量 均在1 TPa 左右.但缺陷的存在对强度和拉伸极限 应变均有一定的影响.

表1分别列出了存在各种空位缺陷的两种不同 手性石墨烯薄膜的抗拉强度以及相应的应变值.为 便于进行直观比较,将表中的结果绘于图4.

从图 4 可以看出,空位缺陷的存在,使石墨烯薄 膜的抗拉强度下降.对于扶手椅型石墨烯薄膜,单原 子空位缺陷使石墨烯薄膜的抗拉强度下降 8.10%, 两种类型的双原子缺陷的下降幅度分别为 6.10%和 3.37%,单原子空位缺陷的影响略大于双原子空位 缺陷的影响.对于锯齿型石墨烯薄膜,单原子空位缺 陷使抗拉强度下降 4.61%,两种类型的双原子缺陷 的下降幅度分别为 2.15%和 6.41%.缺陷的存在对 石墨烯拉伸极限应变(对应拉伸强度)也有一定程度 的影响.对于扶手椅型石墨烯薄膜,单原子空位缺陷 使极限应变降低 10.95%,而双原子空位缺陷对极限 应变却没影响.对于锯齿型石墨烯薄膜,空位缺陷均 使石墨烯的拉伸极限应变降低.单原子空位缺陷、两 种类型双原子缺陷是拉伸极限应变降低幅度分别为 24.86%,19.21%和 27.97%.

表 1 空位缺陷对单层石墨烯薄膜基本拉伸力学性能的影响 Tab.1 Effect of vacancy defects on the tensile mechanical properties of single grapheme sheets

图 4 不同空位缺陷对石墨烯薄膜的抗拉强度和拉伸极限应变的影响

Fig.4 Effects of different vacancy defects on the tensile mechanical properties of single graphene sheets

由以上分析可知,单原子空位缺陷和双原子空 位缺陷对扶手椅型和锯齿型石墨烯薄膜的杨氏模量 没有影响,均使拉伸强度和拉伸极限应变下降,但双 原子空位缺陷对扶手椅型的拉伸极限应变没影响. 另外,需要说明的是,空位缺陷的密度及分布方式也 是影响石墨烯力学性能的重要因素,在以后的研究

工作中将陆续开展.

2.2 空位缺陷对石墨烯薄膜变形破坏的影响

对于没有缺陷的石墨烯薄膜,缺陷首先形成于 薄膜边缘处,如图5所示,薄膜大体沿与载荷方向呈 45 度方向断裂,但是对于含缺陷的石墨烯薄膜,破坏 方式尤其是缺陷的萌生位置,与无缺陷石墨烯不同.

载荷作用下开始出现缺陷及断裂时的原子构型,发 现无论扶手椅型石墨烯,还是锯齿型石墨烯,新的缺 陷的萌生位置均出现在单原子空位缺陷或双原子空 位缺陷附近.缺陷出现后,附近的碳碳键最先断裂, 在拉伸载荷继续作用下,碳碳键逐渐断裂,最后薄膜 沿着断裂带断裂破坏.

3 结论

利用分子动力学方法,对完美的和含空位缺陷 的扶手椅型和锯齿型单层石墨烯薄膜的拉伸力学性 能进行了计算机数值模拟,研究了空位缺陷对石墨 烯基本拉伸力学性能和变形机制的影响.模拟结果 表明,单原子空位缺陷和双原子空位缺陷对扶手椅 型和锯齿型石墨烯薄膜的杨氏模量没有影响,但在 一定程度上降低了拉伸强度和拉伸极限应变.单原 子空位缺陷和双原子空位缺陷使拉伸强度降低幅度 最高达8.10%和6.41%,并大幅度降低拉伸极限应 变.缺陷对石墨烯的拉伸变形破坏机制也有一定的 影响.在外载作用下,新的缺陷的萌生位置均出现在 空位缺陷附近.

参考文献:

- [1] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films [J]. Science, 2004, 306 (22).666.
- [2] Geim A K, Novoselov K S. The rise of graphene [J]. Nature Materials, 2007, 6:183.
- [3] 中国科学院.2008 科学发展报告[M].北京:科学出版社, 2008.33 - 38.

Chinese Academy of Sciences. 2008 Science development report [M]. Beijing: Science Press, 2008.33 - 38.

- [4] Hashimoto A, Suenaga K, Gloter A, et al. Direct evidence for atomic defects in graphene layers[J]. Nature, 2004, 430:870.
- [5] Meyer J C, Kisielowski C, Erni R, et al. Direct imaging of lattice atoms and topological defects in graphene membranes[J]. Nano Lett, 2008, 8(11), 3582.
- [6] Mielke SL, Troya D, ZHANG Sulin, et al. The role of vacancy defects and holes in the fracture of carbon nanotubes [I]. Chemical Physics Letters, 2004, 390: 413.
- [7] Tserpes K I, Papanikos P. The effect of stone-wales defect on the tensile behavior and fracture of single-walled carbon nanotubes[J]. Composite Structures. 2007, 79:581.
- [8] Tersoff J. Modeling solid-state chemistry: interatomic potentials for multicomponent systems [J]. Phys Rev B, 1989, 39 (8):5566.
- [9] Tersoff J. Erratum: modeling solid-state chemistry: interatomic potentials for multicomponent systems[J]. Phys Rev B, 1990,

- [10] Allen M P, Tildesley D J. Computer simulation of liquids[M]. Oxford:Clarendon Press, 1991.71 - 181.
- [11] LEE Changgu, WEI Xiaoding, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321(5887): 385.
- [12] Ni Z H, Wang H M, Kasim J, et al. Graphene thickness determination using reflection and contrast spectroscopy[J]. Nano Letters, 2007, 7(9):2758.
- [13] Dresselhaus M S, Dresselhaus G, Eklund P C. Science of fullerenes and carbon nanotubes [M]. San Diego: Academic Press, 1996.

(上接第 1187 页)

(2) 钢渣吸附阴离子染料刚果红的行为可用准 二级吸附速率方程表示.且随着刚果红初始浓度的 减少、钢渣投加量的增加、钢渣粒径的减小,准二级 速率常数增加.

(3) 钢渣吸附阴离子染料刚果红溶液过程可用 Langmuir 和 Freundlich 等温吸附方程式描述,且用 Freundlich 等温吸附过程描述更为准确. 钢渣吸附 各浓度刚果红的 $R_{\rm L}$ 值均在 0~1之间, 1/n =0.409 5(0.1<1/n<1),说明该吸附过程容易 进行.

(4) 钢渣对阳离子染料孔雀石绿的吸附去除效 果优于阴离子染料刚果红,但对同为阳离子染料的 亚甲基蓝的吸附去除效果却很差.钢渣可与刚果红 及孔雀石绿在表面结合成较稳定的晶体结构,而仅 与亚甲基蓝结合成松散的不定型小颗粒结构.与钢 渣表面正负电荷吸引作用相比,钢渣吸附处理染料 的效果,受钢渣-染料结合方式的影响更大.

参考文献:

- [1] Ramakrishna K R, Viraraghavan T. Use of slag for dye removal [J]. Waste Management, 1997(97): 483.
- [2] 朱洪涛,王跃利,许佩瑶. 用粉煤灰及过氧化氢联合处理印染 废水[J]. 华北电力大学学报. 2002,29(3):89.
 ZHU Hongtao, WANG Yueli, XU Peiyao. Treatment of dyeing wastewater by combination of fly ash and H₂O₂[J]. Journal of

North China Electric Power University. 2002, 29(3):89.

[3] 谢复青.碱性品红染料废水处理研究[J]. 大众科技,2007 (10):167.

XIE Fuqing. Basic fuchsin dyeing wastewater treatment review [J]. Popular Science & Technology, 2007(10):167.

- [4] 谢复青,李建章. 钢渣吸附-高温再生处理活性翠蓝染料废水
 [J]. 化工技术与开发,2006,35(9):42.
 XIE Fuqing, LI Jianzhang. Adsorption of activated jade blue dyeing wastewater with steel slag [J]. Technology & Development of Chemical Industry,2006,35(9):42.
- [5] 谢复青,何星存,陈孟林.钢渣/焦炭吸附-微波降解法处理孔雀石绿染料废水的研究[J].化工时刊,2006,20(3):3.
 XIE Fuqing, HE Xingcun, CHEN Menglin. Treatment of malachte green wastewater by steel slag/coke adsorption-microwave radiation [J]. Chemical Industry Times, 2006, 20 (3);3.
- [6] Gupta V K, Srivastava S K, Mohan D. Equilibrium uptake, sorption dynamics, process optimization, and column operations for the removal and recovery of malachite green from wastewater using activated carbon and activated slag [J]. Industrial and Engineering Chemistry Research, 1997, 36 (6):2207.
- [7] Acemioğlu B. Adsorption of Congo Red from aqueous solution onto calciumrich fly ash [J]. Journal of Colloid and Interface Science, 2004, 274(2): 371.
- [8] Wang L, Wang A. Adsorption properties of Congo red from aqueous solution onto N, O-carboxymethyl-chitosan [J]. Bioresource Technology, 2008, 99(5):1403.
- [9] Pretsch E, Buhlmann P, Affolter C. Structure determination of organic compounds: tables of spectral data [M]. Berlin, New York: Springer, 2000.