第 38 卷第 10 期 2010 年 10 月

文章编号: 0253-374X(2010)10-1501-05

DOI:10.3969/j.issn.0253-374x.2010.10.018

圆形腔体内热杆件轴向同心移动湍流换热模拟

于连广,吴喜平,骆泽彬 (同济大学机械工程学院,上海 201804)

摘要:提出利用稳态方程求解长杆状发热物体在圆形腔体内 做轴向运动时产生湍流对流和传热问题,可以节约计算成 本.对3种工况进行了数值模拟,得到整个计算域的流场与 温度场.模拟的结果与经典经验公式基本吻合.对比了3种 工况条件下发热物体壁面局部努塞尔数、壁面局部温度以及 发热物体前后端附近空气的温度分布,发现当圆环流与物体 移动逆向时有强化散热作用,而当圆环流与物体移动同向时 散热效果变差.

关键词:数值模拟;同心圆环;移动发热物体;传热 中图分类号:TK 124 **文献标识码**:A

Numerical Study on Turbulent Flow and Heat Transfer in Circular Cavity with Moving Inner Hot Rod

YU Lianguang, WU Xiping, LUO Zebin (College of Mechanical Engineering, Tongji University, Shanghai 201804, China)

Abstract: Problems of turbulent flow and heat transfer in concentric annuli with moving inner hot rod are solved by the proposed steady equation method, and cost of computation is, therefore, cut down. Simulation is made to achieve the flow field and temperature field of whole computation area, which is approximate to what is achieved by classical experience equation. Partial wall Nu and wall temperature of hot rod as well as air temperature distribution near rod front and bottom are compared in three work conditions. Results indicate that enhanced heat release effect takes on when annuli flow has the reverse direction, effect weaken.

Key words: numerical analysis; concentric annulus; moving hot rod; heat transfer

长杆状发热物体在圆形腔体空间做轴向运动

产生湍流对流和传热现象在某些特定场合可以遇到.如核反应堆堆芯应急冷却核燃料渠道、列车在 长隧道行驶、钢构件热轧冷却系统等.在这物理现 象中,移动物体与腔体环境不断进行对流换热,腔 体内的流体流态可能是层流或湍流.文献[1]对充 分发展阶段圆形物体做同心轴向运动时圆环流的 传热现象进行了研究,得到了层流态的努塞尔数 (N_u) 数解析表达式.文献[2-3]利用修正混合长 度模型得到了相同问题的湍流态摩擦系数以及 N_u 数分析解.文献[4-5]分别利用 $k - \epsilon$ 湍流模型以 及雷诺应力湍流模型对文献[2]中的问题重新进行 了数值模拟.

文献[6]讨论了类似的湍流传热过程,但考虑的 是移动物体在初始温度设定情况下不断被冷却的过 程,因此是一个气固耦合换热问题.

值得注意的是,以上这些研究都是仅仅针对物体与腔体之间的圆环流充分发展的阶段,而没有考虑移动物体长度的影响.笔者利用数值模拟的方法,得到沿轴向不同位置的局部 N_u 数以及包括移动物体前后端附近区域在内的整个计算域温度场分布.

1 对流传热分析

考虑发热长杆状物体(以下称内核)在圆形腔体 内向右端做同心轴向移动(见图1),整个腔体空间对 流传热将是三维非稳态过程.如果整个腔体区域非 常大,加上需要考虑移动边界问题,按目前的技术数 值模拟的计算成本将非常昂贵甚至难以完成,这也 是很少有学者对该问题进行全域模拟的主要原因. 因此为了减小计算量、在深入分析的基础之上对模 型进行合理简化是最有效的手段.

收稿日期:2009-06-17

基金项目:上海市科委基金资助项目(07dz12022)

作者简介:于连广(1975—),男,博士生,主要研究方向为地铁节能. E-mail:hiylg@sohu.com

吴喜平(1944—),男,教授,博士生导师,主要研究方向为地铁节能及冰蓄冷. E-mail:wuxiping@tongji.edu.cn

根据前人研究成果^[7-8],腔体空间典型的气流 分布大致可分为图1所示的几个部分.图中,设内核 速度为 U₀、腔体出入口平均风速 U、圆环流平均风 速为 w,以右方向为正.当内核做匀速运动,而腔体 出入口边界速度条件不变且腔体长度足够长时,远 离移动物体处的气流速度分布将与均匀管流相同; 而移动内核周围气流也将趋于相对稳定.如果物体 发热条件不随时间改变,同样可以假设内核周围的 温度场相对于内核不再发生变化.

根据连续方程可以得到3个速度之间的关系

$$w = \frac{U - \alpha U_0}{1 - \alpha} \tag{1}$$

其中,α为活塞比,即内核横截面积与腔体横截面积 之比.从式(1)可以看出,当U₀及U不变时,w也不 会变化.

如果腔体内的气流运动完全是由内核做匀速运动引起的,一般状态下 U_0 大于U,从式(1)中可以看出当 α 足够大时,w可能为负值,而当出入口有风机提供压差动力时,w方向由式(1)确定.

基于以上的分析,可以将内核周围的对流传热考 虑成稳态问题,计算域包括圆环区域以及移动内核前 后的明显受内核影响的距离.根据文献[9]对槽道湍 流中存在障碍物的实测结果,障碍物的尾流段大约等 于7.1倍的障碍物特征尺寸;而根据文献[10]数值模 拟的结果,障碍物的迎流段大约是1.48倍、尾流段是 6.47倍障碍物特征尺寸.由于速度方向不确定,因此 取计算域边界距内核前后端各 300 mm,内核圆筒长 度 *l*=1420 mm,内核直径 *d*_i=38 mm,腔体直径*d*_o= 52 mm.

2 控制方程及求解

由于选取的计算域属于轴对称体,且在切向上 边界条件并不发生变化,因而可以忽略切向的控制 方程.引入 Boussinesq 粘性系数模型,建立二维圆柱 坐标系不可压缩流体稳态控制方程.

2.1 连续性方程

$$\frac{\partial u}{\partial x} + \frac{1}{r} \frac{\partial (rv)}{\partial r} = 0 \tag{2}$$

式中:*u*,*v*分别为轴向与径向的时均速度;*x*为轴向坐标;*r*为径向坐标.

2.2 动量方程

$$\frac{\partial\rho uu}{\partial x} + \frac{1}{r} \frac{\partial}{\partial r} (r\rho vu) = \frac{\partial}{\partial x} \left(\mu_{\text{eff}} \frac{\partial u}{\partial x} \right) + \frac{1}{r} \frac{\partial}{\partial r} \left(r\mu_{\text{eff}} \frac{\partial u}{\partial r} \right) - \frac{\partial p}{\partial x} + \frac{\partial}{\partial x} \left(\mu_{\text{eff}} \frac{\partial u}{\partial x} \right) + \frac{1}{r} \frac{\partial}{\partial r} \left(r\mu_{\text{eff}} \frac{\partial v}{\partial x} \right) \frac{\partial\rho uv}{\partial x} + \frac{1}{r} \frac{\partial}{\partial r} (r\rho vv) = \frac{\partial}{\partial x} \left(\mu_{\text{eff}} \frac{\partial v}{\partial x} \right) + \frac{1}{r} \frac{\partial}{\partial r} \left(r\mu_{\text{eff}} \frac{\partial v}{\partial r} \right) - \frac{\partial p}{\partial x} + \frac{\partial}{\partial x} \left(\mu_{\text{eff}} \frac{\partial u}{\partial r} \right) + \frac{1}{r} \frac{\partial}{\partial r} \left(r\mu_{\text{eff}} \frac{\partial v}{\partial r} \right) - \frac{\partial p}{\partial x} + \frac{\partial}{\partial x} \left(\mu_{\text{eff}} \frac{\partial u}{\partial r} \right) + \frac{1}{r} \frac{\partial}{\partial r} \left(r\mu_{\text{eff}} \frac{\partial v}{\partial r} \right) - \frac{2\mu_{\text{eff}} v}{r^2}$$
(3)

式中: p 为流体密度; µ_{eff}为有效粘度; p 为压力.

2.3 能量方程

$$\frac{\partial \rho uT}{\partial x} + \frac{1}{r} \frac{\partial}{\partial r} (r\rho vT) = \frac{\partial}{\partial x} \left(\left(\frac{\mu}{P_{\rm r}} + \frac{\mu_{\rm t}}{\sigma_{\rm T}} \right) \frac{\partial T}{\partial x} \right) +$$

$$\frac{1}{r}\frac{\partial}{\partial r}\left(r\left(\frac{\mu}{P_{\rm r}}+\frac{\mu_{\rm t}}{\sigma_{\rm T}}\right)\frac{\partial T}{\partial r}\right) \tag{4}$$

式中:T为流体温度,K; P_r 为普朗克系数; u_t 为湍流粘度; σ_T 为湍流普朗克系数, $\sigma_T = 0.85$.能量方程 不考虑粘性耗散与体积力做功项.

2.4 湍流模型

由于笔者研究的重点之一是对壁面 N_u 数精确 求解,因此所采用的湍流模型一定要适合近壁面处 低雷诺数问题,同时在湍流核心区还要考虑复杂涡 旋、回流等现象.剪切应力输运 $k - \omega$ 模型(SSTk - $<math>\omega$ 模型),综合了 $k - \omega$ 模型在近壁区计算的优点和 $k - \varepsilon$ 模型在湍流核心区计算的优点,将 $k - \omega$ 模型 和标准 $k - \varepsilon$ 都乘以一个混合函数后再相加就得到 这个模型.在近壁区,混合函数的值等于1,因此在近 壁区等价于 $k - \omega$ 模型.在远离壁面的区域混合函 数的值则等于零,因此自动转换为标准 $k - \varepsilon$ 模型. 与标准 $k - \omega$ 模型相比,SST $k - \omega$ 模型中增加了正 交扩散项,同时在湍流粘度定义中考虑了湍流剪切 应力的输运过程,模型中使用的湍流常数也有所不 同.这些特点使得 SST $k - \omega$ 模型的适用范围更广, 比如应用于回流、脱体流等问题.

根据本研究问题的特点,采用 SST $k - \omega$ 模型 对动量方程进行求解. k 方程以及 ω 方程表达如下:

$$\frac{\partial \rho u k}{\partial x} + \frac{1}{r} \frac{\partial}{\partial r} (r \rho v k) = \frac{\partial}{\partial x} \left(\Gamma_{k} \frac{\partial k}{\partial x} \right) +$$

$$\frac{1}{r} \frac{\partial}{\partial r} \left(r\Gamma_{k} \frac{\partial k}{\partial r} \right) + G_{k} - Y_{k}$$

$$\frac{\partial \rho u \omega}{\partial x} + \frac{1}{r} \frac{\partial}{\partial r} (r \rho v \omega) = \frac{\partial}{\partial x} \left(\Gamma_{\omega} \frac{\partial \omega}{\partial x} \right) +$$
(5)

 $\frac{1}{r} \frac{\partial}{\partial r} \left(r\Gamma_{\omega} \frac{\partial k}{\partial r} \right) + G_{\omega} - Y_{\omega} + D_{\omega}$ (6)

式中:k 为湍动能; Γ_k 为 k 的有效扩散系数; G_k 为 k 的生成项; Y_k 为 k 的耗散项; ω 为湍流比耗散率; Γ_ω 为 ω 的有效扩散系数; G_ω 为 ω 的生成项; Y_ω 为 ω 的耗散项; D_ω 是 ω 正交扩散项.以上各项参数具 体解法可以参阅文献[11].

2.5 边界条件

(1) 速度与温度边界. 在腔体壁面处 u = v = 0, $T = 30 \ \mathbb{C}$. 在内核壁面处(包括内核前后端壁面)u = $U_0, v = 0, -\lambda \frac{\partial T}{\partial r} = 1\ 000\ \mathbb{W} \cdot \mathbb{m}^{-2}$,其中 λ 为空气传 热系数. 左侧空气入口即 $x = -300\ \mathrm{mm}\ \Delta$, u = U = $aU_0 + (1 - a)w, v = 0, T = 30\ \mathbb{C}$. 右侧空气出口即 $x = 1\ 720\ \mathrm{mm}\ \Delta$, 采用 Neumann 条件, 即 $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial x} =$ $\frac{\partial T}{\partial x} = 0.$

(2) k, ω 边界. 在壁面处, $k = 0, \omega = \frac{800\mu}{\rho g^2}$,其中, μ 为空气粘度系数, y_1 为壁面到第 1 个网格中心的距离. 左侧空气入口按充分发展的湍流考虑, $k = \frac{3}{2} (UI)^2$, $\omega = \frac{U}{d_o}$,其中 I 为湍流强度, $I = 0.16 \left(\frac{\rho U d_o}{\mu}\right)^{-1/8}$. 右侧 空气出口同样采用 Neumann 条件.

2.6 数值模拟过程

由于所有的湍流脉动在壁面附近变化很快,近 壁面处的网格划分与计算精度有直接的关系.

在粘性底层 $y^+ < 11.6$ 内沿径向布置 6~8网 格单元,且第1个网格单元距壁面距离 $y^+ \approx 1$,网格 尺寸沿径向按一定比例增加,最大的尺寸控制在水 力半径的 3%以内,其中 y^+ 为量纲一化距壁面距 离.在圆管段半径方向设置 94个网格,在圆环段半 径方向设置 52个网格.因为方程是抛物线形式,轴 向控制体的尺寸长度设成常数,在壁面附近设为 0.06 mm,远离壁面区设为 0.30 mm,中间设 1 层过 渡区.在圆环段与圆管段前后连接处各设置 1 个过 渡区,过渡区内采用三角形非结构网格,其余区域设 置四边形结构网格.在计算过程中根据流场的求解 结果对网格划分进行检查,如不符合要求进行重新 划分调整.网格在模拟中经过了独立性检验.

控制方程离散通过有限容积法求解,对流项采用 二阶迎风格式,扩散项采用中心差分格式.由于能量 方程中不考虑内摩擦,能量与流动方程可以解耦求 解.采用交叉网格和 SIMPLE 算法解决动量方程与连 续性方程中速度与压力耦合问题.研究的问题涉及到 管道内钝体绕流,由于会出现卡门涡街的现象,因此 并非是严格意义的稳态流,造成连续性方程难以收 敛.因此将连续性方程的残差控制在 2×10⁻⁴以下、其 他变量的残差都控制 10⁻⁴以下作为收敛条件.

3 模拟结果与讨论

3.1 数值模拟与试验数据对比

为验证本文模拟方法,应该将数值结果与经典 实验结果进行对比.但至今尚没有长杆物体在圆管 空间做轴向移动的湍流换热实验,因此只能对比内 核静止的工况来检验模型的正确性.对于内外壁面 静止的同心圆环湍流,当对流与换热达到充分发展 阶段时,Dalle Donne 以及 Meerwald^[12]提出了内壁 面的 *N*_u 数和摩擦系数 *C*_f 的经验公式.

$$N_{\rm u} = 0.018 \ 1\sigma^{-0.2} (T_{\rm o}/T_{\rm i})^{-0.18} R_{\rm e}^{0.8} P_{\rm r}^{0.4}$$
(7)
$$C_{\rm f} = 0.061 \ 5(1-\sigma)^{0.1} R_{\rm e}^{-0.22}$$
(8)

式中: σ 为内核直径与腔体直径比,本文模型 σ = 0.731; T_{o} 为外壁面温度; T_{i} 为内壁面温度; R_{e} 为 圆环流的雷诺数, $R_{e} = \frac{w(d_{o} - d_{i})}{r_{e}}$.

由于内核边界表面热流已知,因此 $N_u = \frac{q(d_o - d_i)}{\lambda(T_i - T_m)}$.其中,q为壁面热流, T_m 为圆环流截面

平均温度,
$$T_{\rm m} = \frac{\int_{r_{\rm i}}^{r_{\rm o}} T |u| r \mathrm{d}r}{\int_{r_{\rm i}}^{r_{\rm o}} |u| r \mathrm{d}r}$$
. $C_{\rm f} = \frac{\tau_{\rm w}}{1/2\rho w^2} =$

 $\frac{\mu \frac{\partial u}{\partial r}}{1/2\rho w^2}, 其中, \tau_w 为内壁面剪切应力. 利用数值$ $模拟求出 <math>T_m, T_i, \frac{\partial u}{\partial r}$ 等参数,即可求出壁面局部 N_u 数以及摩擦系数 C_f .数值解选取的参考点在量纲一 化位置 $x_r = \frac{x}{d_o - d_i} = 70 \pounds(以核心后端垂直壁面)$ 所在位置为轴向零点),内核静止不同雷诺数条件下 N_u, C_f 数值模拟结果以及经验公式计算值对比见图 2、图 3.

图 2 内核静止时 $x_r = 70.00$ 处内核壁面局部 N_u Fig.2 Partial N_u at $x_r = 70.00$ in a stationary

从图 2~3 中可以看出,数值解与经验公式非常 接近,证明所选取的湍流模型以及计算程序可以很 好模拟真实对流传热的结果.在模拟过程中发现,圆 环流的流动有明显的充分发展阶段,但是温度分布 却一直没有严格的相似关系,即在充分发展区 N_u数 也一直发生变化,但随长度变化越来越小.说明内壁 是第 2 类条件、外壁是第 1 类边界条件的传热现象 没有 严格 意义的热充分发展阶段.根据文献 [13-14],壁面条件为第 2 类条件或者第 1 类条件 对湍流 N_u的影响不会很大,因此以 x_r = 70 处的局 部 N_u数代表"充分发展"阶段的 N_u数.

3.2 3种工况条件下圆环区域模拟结果

当内核做同心轴向运动时,空间气流与温度场 将发生较大变化.这里模拟2个具有代表性的工况, 即内核分别以相对速度 $U_{0,r} = \frac{U_0}{w} = 0.5$ 以及 $U_{0,r} = -1.0$ 移动,同时将模拟结果与内核静止工况 $U_{0,r} = 0$ 做对比,以上3个工况圆环流雷诺数($R_e = 17500$) 以及直径比等其他条件相同.

图 4 显示了 $x_r = 70$ 处,3 种工况条件下圆环流 速度沿径向分布,图中 r_i 为内核半径, r_o 为腔体半 径.从图中可以看出当 $U_{0,r} = 0$ 内核静止时,圆环流 轴向速度分布基本呈对称分布,而内核相对外壁面 产生移动时,圆环流轴向速度分布发生畸变.当 $U_{0,r} = 0.5$ 时轴向速度峰值靠近内壁面,而 $U_{0,r} =$ -1.0时轴向速度峰值靠近外壁面.

图 4 $R_e = 17500, \sigma = 0.731$ 条件下轴向圆环流沿径向分布 Fig. 4 Radial distribution of axial flow when $R_e = 17500, \sigma = 0.731$

图 5 显示了 3 种工况条件下的 N_u 模拟结果. 从 图中可以看出,其他条件相同的情况下,在流动充分 发展阶段, $U_{0,r} = -1.0$ 时 N_u 最大,而 $U_{0,r} = 0.5$ 时 N_u 最小. 而从图 4 可以看出当 $U_{0,r} = -1.0$ 时内核 壁面与圆环流相对速度最大、壁面附近速度梯度最 大,因而对流换热作用最明显.

图 5 $R_e = 17500, \sigma = 0.731$ 条件下内核壁面局部 N_u 变化 Fig.5 Partial inner rod N_u variance wall when $R_e = 17500, \sigma = 0.731$

从图 5 中还可见出口效应对 N_u 影响很小,而在 进口段($U_{0,r} = -1.0$ 时在右边), N_u 数在紧靠近端 口附近变化非常剧烈.为了更详细地了解进口段 N_u 数变化规律,图 6 绘制出 $U_{0,r} = 0.5$ 工况条件下更细 致的进口段内核壁面局部 N_u 数变化曲线,图 7 绘制 出了 $U_{0,r} = 0.5$ 工况条件下进口段轴向速度的等值 线. 从图 6 中可以看出,大致在 $0 < x_r < 0.03$ 范围内 N_u 有一个剧烈下降过程,然后进入一个相对稳定的 阶段. 而大致在 $x_r > 0.20$ 以后 N_u 值开始剧烈上升, 大约当 $x_r = 1.00$ 左右达到峰值,接着 N_u 开始单调 下降,且斜率逐渐降低.

进口段局部 N_u 数这种"二次跃升"现象可以通 过该区域的特别是贴近壁面处的速度分布特点进行 解释.从图 7 可以看出,在圆环流进口附近的流场实 质上属于受限钝体绕流问题,较大径向速度的气流 进入圆环后,由于强烈的离心作用使得在内核壁面 入口处形成涡流.涡流在大致 x_r = 0.20 的位置使进 口层流边界层遭到破环,因而带来 N_u 重新跃升. $x_r > 1.00$ 以后,圆环流进入正规调整阶段,湍流边 界层逐渐形成,因而 N_u 又重新下降.对于另外 2 种 工况即 $U_{0,r} = 0$ 或 $U_{0,r} = -1.0$ 时,进口段 N_u 都有类 似"二次跃升"现象.而且当 $U_{0,r} = -1.0$ 时跃升的幅 度最大,而 $U_{0,r} = 0.5$ 时最小.这是因为 $U_{0,r} = -1.0$ 工况条件下,来流与内核相对速度最大,因而形成涡 旋的向心力更强烈.

图 6 U_{0,r} = 0.5 时靠近进口处内核壁面局部 N_u 变化 Fig.6 Partial wall N_u variance near inlet

工程中有时候需要了解内核壁面的温度分布情况,图8显示了3种不同工况条件下温度在不同位置的变化.量纲一化的温度 θ 定义为 $\theta = \frac{T - T_o}{qs/w\rho c_p}$; s为内核表面与圆环横截面积比,s= $\frac{\pi d_i l}{\pi (d_o^2 - d_i^2)/4}$; c_p 为空气比热容.从图中可以看出, 在3种不同工况下,在流动充分发展阶段内核壁面量纲一化温度都随圆环流动方向而增大.在进口段, 3种工况条件下温度都有个剧烈起伏的过程,与相应位置的 N_u 变化趋势相反.3种工况条件下整个内核 壁面平均温度有明显的差异,其中 $U_{0,r} = 0.5$ 时平均温度最高, $U_{0,r} = -1.0$ 时最低.而出口段温度受端口效应的影响不是很大,只是在接近末端时有个较小的下降趋势.

Fig. 8 Dimensionless temperature
$$\theta$$
 variance of partial internal rod wall when $R_e = 17500, \sigma = 0.731$

4 结论

针对长杆状发热物体在长腔体空间做轴向运动 产生湍流对流和传热问题进行了理论分析以及数值 求解.由于该问题属于三维非稳态过程且区域较大, 给数值模拟带来很大困难.

为了简化模型,考虑腔体足够长以及物体做轴向同心匀速运动,此时物体周围气流以及温度分布 相对移动的内核可以看成"准稳态".计算域仅考虑 受核心边界影响较大的范围,且由于是轴对称体,因 而不考虑参数在圆柱坐标中切向的变化.

模拟程序采用了对壁面以及核心流都有很好适 应性的 SST *k* - ω 湍流模型.将物体静止时的模拟 结果与圆环流经典经验公式进行对比,从而验证了 模型与计算程序的有效性.在保证圆环流雷诺数以 及直径比等量纲一化参数相同的前提下,对物体量 纲一化移动速度 *U*_{0,r}为 0.5,0, -1.0 工况做了较细 致的研究,得到以下结论:

(1)管内物体轴向相对外管壁面的移动会引起 圆环流速度剖面沿径向发生畸变,进而影响传热效 果.当 U_{0,r}=0.5 也即移动方向与圆环流相同时,对 传热会产生不利影响;U_{0,r}=-1.0 也即移动方向与 圆环流相反时,会对传热产生强化作用.

(2) 在圆环流进口端 N_u 数在经历一个很小距 离的下降后会出现一个重新跃升的现象,这是由于 绕流离心力造成了涡旋引起的.

参考文献:

 [1] 茂地徹,桃木悟,東井上真哉.内管が軸方向に運動する同心 環状流路内の十分に発達した層流熱伝達の解析(第1種と 第2種の境界条件の場合)[J].長崎大学工学部研究報告, 1995,25:75.
 (下转第1520页)