文章编号: 0253-374X(2011)01-0042-06

DOI:10.3969/j.issn.0253-374x.2011.01.008

泡沫混凝土型块填充板的试验与有限元分析

张大英1,王录民1,2,梁醒培1,2,王树明3

(1.合肥工业大学 土木与水利工程学院,安徽 合肥 230009; 2.河南工业大学 土木建筑学院,河南 郑州 450052;3.河南东方建筑设计有限公司,河南 郑州 450003)

摘要:将废旧聚苯乙烯泡沫塑料(EPS)回收后破碎成3~8 mm大小的颗粒,与水泥浆和胶粉溶液按一定的配合比均匀 拌合成聚苯乙烯泡沫混凝土,并制成中心对称的圆环体型块 填充在现浇双向板的中性轴部位,可以节省大量混凝土,降 低造价.用有限元软件 ANSYS 对此新型现浇 EPS 混凝土型 块填充板进行静载作用下的非线性分析,结果表明其性能优 越,有推广潜力.

关键词:聚苯乙烯泡沫塑料混凝土型块;试验;非线性;数 值模拟;有限元 中图分类号:TU 375.2 **文献标识码**:A

Experimental Study and Finite Element

Analysis of Cast-in-situ Slab with EPS-block

ZHANG Daying¹, WANG Lumin^{1,2}, LIANG Xingpei^{1,2}, WANG Shuming³

(1. School of Civil Engineering, Hefei University of Technology, Hefei 230009, China; 2. School of Civil Engineering and Architecture, Henan University of Technology, Zhengzhou 450052, China; 3. Henan Oriental Design Co., Ltd., Zhengzhou 450003, China)

Abstract: Polystyrene foam being recycled are broken into particles with the size of $3 \sim 8$ mm which are mixed with cement and glue powder in a certain proportion into expanded polystyrene foam concrete and are made into the shape of torus with center-symmetric blocks that are filled in neutral axis location of in-situ two-way slabs. A lot of concrete can be saved and the cost reduces accordingly. And this new cast-insitu slab with EPS-block under dead load is analyzed through the finite element analysis software ANSYS. Results show that the slab with EPS-block is of good performance which is prospecting in development.

Key words: EPS-block; experiment; nonlinear; numerical simulation; finite element

现浇空心板因其自重轻、整体性好、适用性强等 优点,被各类房屋建筑广泛采用.但其常用的芯体材 料如高强复合薄壁管(盒)、混凝土薄壁筒体管、高强 薄壁管(盒)^[1]、加强塑料管、大直径金属波纹管等, 适合填充在单向板中,利于单向受力,若填充在双向 板中,则使得板在两个方向被削弱的刚度不同,影响 板的双向受力性能.基于上述情况,并结合现阶段建 筑材料的研究状况,选择一种新的芯体材料——废 旧聚苯乙烯泡沫混凝土型块(EPS 混凝土型块)填充 在现浇双向板中.

废旧聚苯乙烯泡沫(EPS)密度较小,具有良好的 保温隔热性、较强的化学稳定性和水稳定性、良好的 力学性能,施工方便,在土工领域的应用已有20多 年的历史^[2-6]. 1972年, EPS 首次作为轻质填土材 料,用于奥斯陆郊外的 Flom 大桥改造工程中,该桥 采用 EPS 块体进行施工处理后,几乎再没有发生沉 降;此后,挪威的科研人员对 EPS 作了广泛的研究, 到 1990 年底, 共完成 120 处 EPS 填方施工 24 × 104 m³.1986年,日本成立了EPS轻质填料开发机构,集 中力量进行了 EPS 的研究开发和普及利用,并对筑 造的 EPS 大规模填土工程进行了反复实车运行,揭 示了 EPS 的应力-应变关系和其他力学性质,充分证 明了 EPS 作为填土材料应用的可行性,并将这种材 料广泛地推向了路堤填土工程的应用[7].近年来,在 我国 EPS 也被广泛用作路基填料、保温砌筑砂浆、保 温混凝土砌块和保温墙板等[8-10].2007年,王录民、 张献兵等将 EPS 作为粮仓钢筋混凝土现浇楼板的填 充置换材料,并进行了理论分析和实验研究[11].

本研究将 EPS 破碎成小颗粒后用水泥浆黏结并 使其成型填充在建筑楼板中以置换掉部分混凝土, 从而减轻楼板自重.基于轴压试验研究的 EPS 混凝

收稿日期:2009-09-22

第一作者:张大英(1982—),女,博士生,主要研究方向为仓储结构、工程力学.E-mail:daying803@126.com

通讯作者: 王录民(1950-),男,教授,博士生导师,工学硕士,主要研究方向为仓储结构、工程力学、结构工程. E-mail: lmw@haut. edu. cn

土力学特性^[12],结合双向板的受力性能,将 EPS 混 凝土制作成具有完美的中心对称外形的圆环体型块 (图 1,2),按照一定的布置规则将 EPS 混凝土型块 安放在钢筋混凝土现浇楼板的中性轴部位进行板的 结构受力分析. EPS 混凝土型块填充板既节省混凝 土又不用抽芯,而且能充分利用工业废料,大大减少 了环境污染.为了深入了解 EPS 混凝土型块填充板 的力学性能,现浇一块 5.4 m×3.6 m 的双向板(图 3)进行静载实验测试,观测并分析其变形、开裂及承 载力.同时,还对 EPS 混凝土型块填充板进行非线性 有限元数值模拟,并将模拟结果与测试结果进行比 较分析,探讨 EPS 混凝土型块填充板的力学行为.

图 1 EPS 混凝土型块实体图 Fig.1 Photograph of EPS-block

图 2 EPS 型块尺寸(单位;mm) Fig.2 EPS-block dimensions(unit;mm)

图 3 EPS 混凝土型块填充板(未浇混凝土) Fig. 3 Slab with EPS-block(no concrete)

1 有限元数值模拟

1.1 空间模型的建立和单元的选取

根据双向板结构的对称性及所施加荷载的对称 性,选择整个结构的1/4 建立几何模型,其中板尺寸 为2.7 m×1.8 m×0.16 m;梁尺寸分别为0.2 m× 0.5 m,0.2 m×0.4 m.用带筋的 SOLID65 单元模拟 钢筋混凝土.填充材料 EPS 混凝土型块的密度^[12]比 混凝土密度低很多,因此,模拟时将放置 EPS 混凝土 型块处作空心处理.有限元模型及网格划分如图 4 所示.

图 4 EPS 混凝土型块填充板模型 Fig. 4 Model of the slab with EPS-block

1.2 材料本构模型

试验时在板表面均布施加砖荷载. EPS 混凝土 型块填充板中混凝土采用 C25 级,钢筋采用 HPB235,HRB335 低强度钢筋;所以数值模拟时混凝 土材料选用弹塑性本构模型即可得到较好的计算结 果.C25 混凝土的应力(σ)-应变(ε)曲线如图 5 所 示,数学表达式为

Fig.5 Stress-strain relationship of concrete in compression

模拟中认为混凝土在应力未达到其强度极限以前,应力应变的非线性关系主要受塑性变形的影响; 在 $\sigma - \epsilon$ 曲线的下降段,混凝土的非线性主要受混凝 土内部微断裂的影响.在William-Warnke破坏准则 的参数中输入了混凝土的抗拉强度 f_t ,当混凝土应 力达到抗拉强度 f_t 时开裂.

钢筋采用双线性随动强化模型,应力-应变关系 如图 6 所示.图 6 中 f_s 为应力; f_y 为屈服强度; E_s 为弹性模量; ϵ_y 为屈服应变; $\epsilon_{s,h}$ 为应力强化起点 C对应的应变; ϵ_s 为应变.在钢筋达到屈服应力后为完 全弹塑性阶段.模型的数学表达式为

$$\sigma_{s} = \begin{cases} E_{s} \varepsilon_{s} \left(E_{s} = \frac{f_{y}}{\varepsilon_{y}} \right) & \varepsilon_{s} \leqslant \varepsilon_{y} \\ f_{y} & \varepsilon_{y} < \varepsilon_{s} \leqslant \varepsilon_{s,h} \end{cases}$$
(2)

式中:σ_s为钢筋的应力.

Fig.6 Stress-strain curves of steel

1.3 基本解法

混凝土的弹塑性变形属于材料非线性问题,需 要求解以下非线性的平衡方程组:

$$[K(\delta)]{\delta} = {P}$$

式中: $[K(\delta)]$ 为结构总刚度矩阵,是节点位移函数; $\{\delta\}$ 为节点位移列阵; $\{P\}$ 为节点荷载列阵.

在求解方程组(3)时采用 Newton-Raphson 方 法(NR法)迭代求解增量平衡方程,NR法能比较全 面地描述荷载-位移全过程的性态.加载采用分级加 载方式,在施加每级荷载增量之后进行迭代求解直 到达到所指定的计算精度再进行下一个荷载增量的 计算.逐步迭代法过程如图 7 所示.

在模拟 EPS 混凝土型块填充板时,一方面,计算 收敛是比较困难的,其主要影响因素有结构形式、单 元尺寸、子步数、迭代次数、收敛准则、收敛精度等, 本文采用残余力的第二范数控制收敛,收敛容差值 调整为0.02,采用试算法,不断调整单元尺寸、子步 数和迭代次数;另一方面,要选取合适的混凝土和钢 筋的本构模型,以保证计算结果的准确性.

2 实例与分析

2.1 试验模型

试验采用黏土砖分级加载方式(图 8),每级荷载 持续时间为 15 min. 在接近开裂荷载时,要缓慢加 载,在加载达到开裂荷载时,要仔细观察板底裂缝情 况,若未出现裂缝,则需持续 30 min 后再观察裂缝 情况;在接近极限荷载时,仍要注意缓慢加载,注意 观察板的受力情况,是否出现过大变形或某些部位 已经破坏.试验主要测定 EPS 混凝土型块填充板的 变形、开裂荷载及承载力.

图 8 试验现场加载图 Fig.8 Loading process

2.2 结果及分析

(3)

2.2.1 EPS 混凝土型块填充板的变形

实验测得的 EPS 混凝土型块填充板典型部位在 各级荷载下的变形及有限元模拟得到的相同位置处 的变形如表1和图9所示,表1中列出了不同砖荷 载作用下的板跨中和长跨1/4 跨中的变形的试验值 和模拟值,图9给出了板跨中和长跨1/4 跨中的试 验值和模拟值的力-变形曲线.由表1可知,实验及 有限元模拟得到的变形均小于《混凝土结构设计规 范》^[13]规定的变形值.

从力-变形曲线(图 9)可以看出,在相同荷载作 用下,当均布压力在0.798~4.389 kPa之间时,模

表 1 EPS 型块填充板的挠度的实验值与模拟值对比 Tab.1 Experimental deflections compared with numerical ones of the slab with EPS-block

砖层数	荷载/kPa —	跨中 Z 向变形/mm			长跨 1/4 跨中 Z 向变形/mm		
		模拟值	试验值	绝对误差	模拟值	试验值	绝对误差
2	0.798	0.100	0.110	0.010	0.111	0.103	0.008
3	1.197	0.438	0.465	0.027	0.303	0.273	0.030
4	1.596	0.524	0.583	0.059	0.365	0.439	0.074
5	1.995	0.830	0.715	0.115	0.481	0.498	0.017
8	3.192	1.227	1.210	0.017	0.740	0.690	0.050
11	4.389	3.276	2.980	0.296	1.527	1.285	0.242
14	5.586	6.564	5.473	1.091	4.244	3.621	0.623
17	6.783	8.444	7.560	0.884	5.474	5.120	0.354
19	7.581	9.325	8.705	0.620	6.054	5.690	0.364

Fig.9 Deflection curve under different loads

拟值与实测值吻合较好,由表2可知,跨中Z向变形 的模拟值与试验值的绝对误差在0.30 mm以内,长 跨1/4 跨中Z向变形的模拟值与试验值的绝对误差 在0.25 mm以内;当均布压力≥5.586 kPa时,模拟 值与实测值的绝对误差稍大,但仍然在1.10 mm以 内,说明有限元模拟能较准确地计算出 EPS 混凝土 型块填充板在各级荷载下的变形值,从而较好地反 映 EPS 混凝土型块填充板的变形趋势. 2.2.2 EPS 混凝土型块填充板的开裂情况

由公式(4)计算得 EPS 混凝土型块填充板的开 裂荷载为3.95 kPa,在实验测试时发现在堆放11层 砖即荷载达到4.389 kPa时,可以用肉眼观测到板 底裂缝,因此,其前一级荷载3.990 kPa(10 层砖)即 为 EPS 混凝土型块填充板的开裂荷载,与公式计算 基本吻合.实验用裂缝观测仪测得的最大裂缝宽度 为0.13 mm $<\omega_{im}=0.30$ mm,板底最大裂缝如图10 所示.

 $M_{cr} = 1.45 \times (0.7 + 120/h) f_{tk} W_0$ (4) 式中: M_{cr} 为受弯构件正截面开裂弯矩计算值;h为 截面高度; f_{tk} 为混凝土抗拉强度标准值; W_0 为验算 边缘的换算截面弹性抵抗矩.

图 10 板底裂缝 Fig.10 Cracks at the bottom of the slab

有限元数值模拟时,通过修正应力-应变关系, 引入垂直于裂缝表面方向上的一个缺陷平面来表示 在某个积分点上出现了裂缝.当裂缝张开时,后继载 荷产生了在裂缝表面的滑动或剪切时,引入一个剪 切力传递系数来模拟剪切力的损失.图 11 给出了 *p*=3.192 kPa 时 EPS 混凝土型块填充板的云图.由 图 11 可知,在第 5 个荷载步即均布压力 p = 3.192kPa时,板底跨中部分单元主拉应力 σ_1 达到混凝土 抗拉强度标准值 1.780 MPa;由图 12 可见,在梁边 跨中部位出现了极少裂缝;由图 13 可知,当均布压 力 p = 4.389 kPa时,板底跨中已出现了大量裂缝. 由此可知,当板面均布压力 $p \ge 3.192$ kPa,板即进 入带裂缝工作阶段.开裂荷载的模拟值与试验值及 公式(4)计算值基本吻合,进一步说明了本文选取的 单元类型、材料本构模型及收敛准则的可行性.

图 11 p=3.192 kPa 时第一主应力 σ₁ 云图 Fig.11 σ₁ (p=3.192 kPa)

图 12 *p*=3.192 kPa 时板底裂缝分布图 Fig.12 Crack distribution(*p*=3.192 kPa)

图 13 *p*=4.389 kPa 时板底裂缝分布图 Fig.13 Crack distribution(*p*=4.389 kPa)

2.2.3 EPS 混凝土型块填充板的承载力

在加载测试 EPS 混凝土型块填充板之前,依据混 凝土结构双向板肋梁楼盖计算理论,按"工"字形截面计 算出板的极限承载力为 7.440 kPa.实际测试时,由于受 到实验条件的限制,仅加载到 19 层砖即 *p* = 7.581 kPa 时即停止加载,经过一段时间后观测 EPS 混凝土型块 填充板的跨中变形为 8.705 mm(表 1),板并未破坏也没 有出现破坏的迹象,说明 EPS 混凝土型块填充板的承载力远大于 7.581 kPa.从一定程度上说明 EPS 混凝土型块填充板具有很好的极限承载能力.

3 结论

(1) 通过准确建立实体模型,合理选取单元类型及材料本构模型,正确设置各种材料参数,合理设置网格剖分尺寸,并选取恰当的收敛准则,对 EPS 混凝土型块填充板进行非线性有限元数值模拟,并将模拟结果与现场实测结果进行对比分析,验证了数值模拟 EPS 混凝土型块填充板的可行性.

(2)有限元模拟结果和实验测试结果都表明, EPS 混凝土型块填充板满足正常使用极限状态下结构的变形和开裂限制.

(3) EPS 混凝土型块的主要骨料为废旧聚苯乙 烯泡沫塑料颗粒,成本低廉,而且变废为宝,减少了 环境污染,降低了工程造价.

参考文献:

- [1] 潘加富,秦从律.GBF 薄壁管现浇混凝土空心楼盖的设计与施 工[J].施工技术,2005,34(12):65.
 PAN Jiafu,QIN Conglv. Design and construction of GBF thin wall pipe cast-in-situ concrete hollow floor [J]. Construction Technology,2005,34(12):65.
- [2] Norwegian Road Research Laboratory. Expanded polystyrene used in road embankments [R]. Norwegian: Norwegian Road Research Laboratory, 1992.
- [3] Thomas A Coleman. Polystyrene foam is competitive. lightweight fill[R]. New York: Civil Engineering, ASCE, 1974.
- [4] Sorlie A. Use of expanded polystyrene in road congress[M]. Vienna:[s. n.],1979.
- [5] Leif Enksson, Roland Trank. Properties of expanded polystyrene laboratory experiments[R].[S.L.]:SGI,1988.
- EPS Construction Method Development Organization. Technical report of construction method using expanded polystyrene[R]. Tokyo: EPS Construction Method Development Organization, 1991.
- [7] 张忠坤,侯学渊,曹正康. 粉煤灰与 EPS 路堤研究综述[J]. 岩石力学与工程学报,2001,20(4):538.
 ZHANG Zhongkun, HOU Xueyuan, CAO Zhengkang. Review on coal cash and EPS used as filler of road embankment[J]. Chinese Journal of Rock Mechanics and Engineering, 2001, 20 (4):538.
- 【8】张忠坤.高等级公路路堤减轻与复合地基加固的研究[J].岩石力学与工程学报,2000,19(3):402.
 ZHANG Zhongkun. On lightening embarkment and reinforcement of composite foundation for highway[J]. Chinese Journal of Rock Mechanics and Engineering,2000,19(3):402.
- [9] 李崇景,杨大海.利用废弃的泡沫塑料生产保温砌筑砂浆[J]. 工业建筑,2003,33(10):84.

LI Chongjing, YANG Dahai. Production of heat-insulating masonry mortar using wasted foamed plastics [J]. Industrial Construction, 2003, 33(10); 84.

- [10] 李崇景,梁志远.利用废旧泡沫塑料制作保温混凝土砌块的研究[J].新型建筑材料,2003(11):31.
 LI Chongjing, LIANG Zhiyuan. Production of heat-insulating concrete block using wasted foamed plastics[J]. New Building Materials,2003(11):31.
- [11] 王录民,张献兵.粮仓 EPS填充板的研究[J].河南工业大学学报:自然科学版,2007,28(1):1.
 WANG Lumin, ZHANG Xianbing. The Study of cast-in-place reinforced concrete slab filled by expanded polystyrene plastic

[J]. Journal of Henan University of Technology: Natural Science Edition, 2007, 28(1):1.

[12] 王录民,张大英,王树明.废旧聚苯乙烯泡沫混凝土试验研究
 [J]. 混凝土,2008(5):103.
 WANG Lumin, ZHANG Daying, WANG Shuming. Experimental

study on expanded polystyrene concrete [J]. Concrete, 2008 (5):103.

 [13] 李明顺,徐有邻.GB50010—2002 混凝土结构设计规范[S].北 京:中国建筑工业出版社,2002.
 LI Mingshun, XU Youlin. GB50010—2002 Code for design of concrete structures[S]. Beijing, China Architecture & Building

Industry Press, 2002.

(上接第17页)

- 【2】 张云,薛禹群,施小清,等. 饱和砂性土非线性蠕变模型试验研究[J]. 岩土力学,2005,26(12):1869.
 ZHANG Yun, XUE Yuqun, SHI Xiaoqing, et al. Study on nonlinear creep model for saturated sand [J]. Rock and Soil Mechanics,2005,26(12):1869.
- [3] 施小清,薛禹群,吴吉春,等. 饱和砂性土流变模型的试验研究
 [J]. 工程地质学报,2007,15(2):212.
 SHI Xiaoqing, XUE Yuqun, WU Jichun, et al. Uniaxial compression tests for creep model of saturated sand in Changzhou [J]. Journal of Engineering Geology, 2007, 15 (2):212.
- 【4】 张云,薛禹群,吴吉春,等.上海砂土蠕变变形特征的试验研究
 [J].岩土力学,2009,30(5):1226.
 ZHANG Yun, XUE Yuqun, WU Jichun, et al. Experimental research on creep of Shanghai sands [J]. Rock and Soil Mechanics.2009,30(5):1226.
- [5] Lacerda W A, Houston W N. Stress relaxation in soils [C] // Proceedings of the 8th International Conference on Soil Mechanics and Foundation Engineering, Vol. 2. Moscow: [s. n.], 1973;221-227.
- [6] Lade P V. Experimental study and analysis of creep and stress relaxation in granular materials [C] // Proceedings of Sessions of Geo – Denver 2007: Advances in Measurement and Modeling of Soil Behavior (GSP 173). Reston: American Society of Civil Engineers, 2007: 1 – 11.
- [7] Casagrande A, Shannon W L. Strength of soils under dynamic loads [J]. Proceedings of the American Society of Civil Engineers, 1948, 74(4); 591.
- [8] Lee K L, Seed H B, Dunlop P. Effect of transient loading on the strength of sand [C] // Proceedings of the 7th International Conference on Soil Mechanics and Foundation Engineering, Vol. 1. Mexico City: Oxford Press, 1969: 239 – 247.

- [9] Yamamuro J A, Lade P V. Effects of strain rate on instability of granular soils [J]. Geotechnical Testing Journal, ASTM, 1993, 16(3):304.
- [10] Matsushita M, Tatsuoka F, Koseki J, et al. Time effects on the pre-peak deformation properties of sands [C]// Proceedings of the 2nd International Conference on Pre-failure Deformation Characteristics of Geomaterials. Torino: A A Balkema, 1999;681 - 689.
- [11] Lade P V, Liggio Jr C D, Nam J. Strain rate, creep, and stress drop-creep experiments on crushed coral sand [J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2009, 135(7):941.
- [12] Tatsuoka F, Ishihara M, Di Benedetto H, et al. Time-dependent shear deformation characteristics of geomaterials and their simulation [J]. Soils and Foundations, 2002, 42(2):103.
- [13] 彭芳乐,李福林,李建中,等.加载速率变化条件下砂土的黏塑
 特性及本构模型[J]. 岩石力学与工程学报,2008,27
 (8):1576.

PENG Fangle, LI Fulin, LI Jianzhong, et al. Viscoplastic behaviors and constitutive modeling of sands under change of loading rates [J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(8):1576.

[14] 彭芳乐,李福林,白晓宇,等.考虑应力路径和加载速率效应砂 土的弹黏塑性本构模型[J].岩石力学与工程学报,2009,28 (5):929.

PENG Fangle, LI Fulin, BAI Xiaoyu, et al. Elasto-viscoplastic constitutive model of sandy soil considering stress path and loading rate [J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(5):929.

[15] Hoque E, Tatsuoka F. Anisotropy in elastic deformation of granular materials [J]. Soils and Foundations, 1998, 38 (1):163.