文章编号: 0253-374X(2020)01-0068-10

多通道自适应陷波算法性能的评价指标及影响因素

张立军,皮雄飞,孟德建,张频捷

(同济大学 汽车学院,上海201804)

摘要:在建立自适应陷波算法的离散系统状态空间方程的 基础上,提出了收敛速度和稳态误差两个评价指标,推导出 了收敛率和稳态误差增益的计算方法,并针对收敛系数、陷 波频率数、通道数、次级通路特性与参考信号特性对收敛速 度和稳态误差的影响进行了分析。最后通过实验对仿真结 果进行了验证。

关键词: 主动噪声控制;自适应陷波算法;收敛速度;稳态 误差

中图分类号: TB55+.2 文献标志码: A

Evaluation Indexes and Influencing Factors of Multichannel Adaptive Notch Algorithm

ZHANG Lijun, PI Xiongfei, MENG Dejian,

ZHANG Pinjie

(College of Automotive Studies, Tongji University, Shanghai 201804, China)

Abstract: Based on the state space equation of the discrete system with the adaptive notch algorithm, two evaluation indexes of convergence speed and steady-state error are proposed, and the calculation methods of convergence rate and steady-state error gain are deduced. Moreover, the effects of convergence rate, notch frequency, number of channels, secondary path characteristics and reference signal on convergence rate and steady-state error are analyzed. Furthermore, the simulation results are verified by experiments.

Key words: active noise control; adaptive notch algorithm; convergence rate; steady-state error

主动噪声控制技术(active noise control, ANC) 相对于被动噪声控制具有低频噪声控制效果好、占

第一作者: 张立军(1972—),男,教授,博士生导师,工学博士,主要研究方向为汽车振动与噪声的分析与控制、新能源汽车动力总成集成与控制。E-mail;tiedu zhanglijun@tongji.edu.cn

源汽车动力总成集成与控制。E-mail:tjedu_zhanglijun@tongji.edu.cn 通信作者:孟德建(1982—),男,助理教授,工学博士,主要研究方向为汽车振动与噪声的分析与控制、新能源汽车动

力总成集成与控制。E-mail: mengdejian@tongji. edu. cn

用空间小和附加成本低等明显优点^[1],高度符合汽 车舒适化、轻量化和智能化的发展趋势,已成为汽车 NVH(noise、vibration and harshness)控制的重要发 展方向之一。发动机噪声是车内噪声主动控制系统 的主要研究对象。发动机噪声的阶次特性决定了以 自适应陷波算法为主的窄带前馈控制应是一种较优 的控制算法^[2]。目前人们对自适应陷波算法的研究 还很不足,缺乏对算法性能的评价指标与有效的评 价方法。这些不足将直接影响到基于自适应陷波算 法车内噪声主动控制系统的正向设计与优化。

影响自适应算法性能的因素主要包滤波器阶数、次级通路、输入信号、权值的收敛方式、收敛系数(步长)等。滤波器的阶数要根据实际工况决定。若阶数选取的太小,则会引起额外误差;若阶数选取太大,则会大幅增加计算复杂度^[34]。采用变阶数最小均方值(least mean square, LMS)算法,例如分段滤波LMS(segmented filter LMS, SGLMS)^[5]、梯度下降LMS(gradient descent LMS, GDLMS)^[6]以及分数阶数LMS(fractional tap-length LMS, FTLMS)^[7]不仅可以使得算法的计算复杂度和稳态误差降低,而且还能提高收敛速度^[3]。

Zhang法为现在主要应用的在线建模方法,通过 发出白噪声信号对次级通路进行实时辨识更新^[8-9], 但是目前缺乏次级通路特征对收敛速度和稳态误差 的影响分析。

收敛系数决定自适应过程收敛还是发散,并且与 收敛速度和稳态误差密切相关。采用变步长算法,能 提升算法的性能。根据不同权值的收敛系数是否变 化一致,变步长又分为一致变步长与非一致变步长。 一致变步长LMS(variable step size LMS, VSSLMS) 的收敛系数变化机制,可以由输入信号、误差信号、梯 度信号或者最优算法决定^[10-14]。非一致变步长算法对

收稿日期: 2019-03-06

于不同大小的权值采用不同大小的收敛系数,以提高 收敛速度。文献[15]提出了一种变步长的LMS算 法,利用双曲正切函数建立了步长和误差信号的关 系,提高了算法的收敛速度。文献[3]提出了用于未 知滤波器脉冲响应序列具有指数衰减包络的可变步 长的LMS算法,在每次迭代时将最优值和自适应滤 波器权值向量之间的均方根偏差最小化,比传统算法 具有更快的收敛速度。文献[16]提出了一种改进的 变步长LMS算法,建立了收敛系数μ和误差信号e之 间的一种新的非线性函数关系,使得算法的收敛速度 和稳态误差的性能有所提高。

自适应陷波算法影响因素分析的结果,将有助于 工程师利用相关优化算法,对算法的关键参数进行优 化,从而在软件上实现对车内噪声主动控制系统的优 化设计。但是目前仍然缺乏次级通路特征、采样频 率、算法通道数参数等对算法性能的影响分析。在此 背景下,本文提出一种数学变化,将自适应陷波算法 转换为与之等价的离散空间状态方程,从而实现对算 法性能准确客观的估计,并对其影响因素进行了分 析。最后通过实验对仿真结果进行了验证。

1 多通道自适应陷波算法

自适应陷波算法由陷波滤波器和自适应算法两部分构成。采用自适应陷波算法的汽车内多通道主动噪声控制系统如图1所示。该系统中有N个扬声器;M个麦克风;需要控制P个频率。d(n)表示初级噪声信号,假设初级噪声中只包括陷波器所消除的频率成分;H。表示次级声信号由扬声器传递至麦克风的次级通路。

多通道自适应陷波算法的表达式为

$$\begin{cases} x_{2P\times 1}(n) = \left[\sin(\omega_{1}n\Delta t), \cos(\omega_{1}n\Delta t), ..., \\ \sin(\omega_{P}n\Delta t), \cos(\omega_{P}n\Delta t)\right]^{\mathrm{T}} \\ x_{2PN\times N}(n) = \left[\begin{matrix} x(n) & \cdots & 0 \\ \vdots & \vdots \\ 0 & \cdots & x(n) \end{matrix}\right] \\ y_{N\times 1}(n) = X_{2PN\times N}^{\mathrm{T}}(n)w_{2PN\times 1}(n) \\ s_{M\times 1}(n) = H_{s}*y(n) = \\ \sum_{i=0}^{K} H_{siN\times M}^{\mathrm{T}}y_{N\times 1}(n-i) \\ d_{M\times 1}(n) = X_{2PM\times M}(n)^{\mathrm{T}}a_{2PM\times 1}(n) \\ e_{M\times 1}(n) = d_{M\times 1}(n) + s_{M\times 1}(n) \end{cases}$$
(1)

式中:x为参考信号;X为重构后的参考信号;w为自 适应算法所调节的权重系数;y为扬声器的输出;s为 扬声器输出y通过次级通路传递后的输出;d为初级 噪声信号;a为各个麦克风位置初级噪声各个频率成 分正弦与余弦分量的含量;e为误差信号,也就是麦 克风测量的信号。

根据最速下降法可以得到的权矢量迭代公式为 $w_{2PN \times 1}(n+1) = w(n) -$

$$2\mu \boldsymbol{R}_{2PN\times M}(n)\boldsymbol{e}_{M\times 1}(n) \tag{2}$$

$$R_{2PN \times M} = \hat{H}_s * X(n) = \sum_{i=0}^{K} X_{2PN \times N}(n-i) \hat{H}_{si} \quad (3)$$

式中:µ为收敛系数,可以控制系统的收敛速度;R为 滤波后的参考信号;Ĥ_s表示对H_s的估计。为了降低 运算量,利用离散傅里叶变化对式(3)进行简化,令

$$\mathbf{s}_{i} = \begin{bmatrix} \cos\left(\omega_{i} \Delta t\right) & \sin\left(\omega_{i} \Delta t\right) \\ -\sin\left(\omega_{i} \Delta t\right) & \cos\left(\omega_{i} \Delta t\right) \end{bmatrix}, i = 1, 2, \cdots, P$$

定义

$$\mathbf{y}_{2P \times 2P} = \begin{bmatrix} \mathbf{s}_i & \cdots & \mathbf{0} \\ \vdots & & \vdots \\ \mathbf{0} & \cdots & \mathbf{s}_P \end{bmatrix}$$
(4)

$$C_{2PN\times 2PN} = \begin{bmatrix} c & \cdots & 0 \\ \vdots & & \vdots \\ 0 & \cdots & c \end{bmatrix}$$
(5)

则式(3)可以转化为

6

$$\boldsymbol{R}_{2PN \times M} = \sum_{i=0}^{K} \boldsymbol{X}_{2PN \times N}(n-i) \hat{H}_{si} = \sum_{i=0}^{K} \boldsymbol{C}^{-i} \boldsymbol{X}_{2PN \times N}(n) \hat{H}_{si} = \hat{\boldsymbol{A}}_{mp2PN \times 2PM} \boldsymbol{X}_{2PM \times M}(n) \quad (6)$$

$$\boldsymbol{A}_{mp2PN \times 2PM} = \begin{bmatrix} 0 & \cdots & 0 \\ \vdots & \sum_{i=0}^{K} H_{si}(\boldsymbol{m}, \boldsymbol{n}) \boldsymbol{c}^{-i} & \vdots \\ 0 & \cdots & 0 \end{bmatrix}$$
(7)

Â_{mp}的获取可以通过对次级通路H_s的单位脉冲 响应进行系统辨识,然后进行傅里叶变换。将Â_{mp} 离线获得后存入控制器中,可以大大提高算法求解 **R**的运算效率。

1.1 目标函数与最优加权矢量

自适应陷波算法的控制目标为使误差信号e的 模的期望值达到最小,即优化目标J达到最小。

$$J = E \left[e^{\mathsf{T}} e \right] =$$

$$E \left[a^{\mathsf{T}} X X^{\mathsf{T}} a + 2 \sum_{i=0}^{K} w^{\mathsf{T}} (n-i) C^{-i} X H_{si} X^{\mathsf{T}} a + \sum_{i=0}^{K} \sum_{j=0}^{K} w^{\mathsf{T}} (n-i) C^{-i} X H_{si} H_{sj}^{\mathsf{T}} X^{\mathsf{T}} C^{j} w (n-j) \right]$$
(8)

假设当J达到最小值时, $w(n) \equiv w_0$,参考式(6),令

$$\sum_{i=0}^{K} C^{-i} X H_{si} = A_{mp} X$$
(9)

又因为 $E[XX^{T}] = E/2$,把式(9)代入式(8),目标函数可以转化为

$$J = \frac{1}{2} \left\| \boldsymbol{a} + \boldsymbol{A}_{mp}^{\mathsf{T}} \boldsymbol{w}_{o} \right\|_{2}$$
(10)

并且当 $w = w_o = -(A_{mp})^+ a$ 时, J取得最小值。此时

$$J = \frac{1}{2} \left\| \boldsymbol{a} - \boldsymbol{A}_{mp}^{\mathrm{T}} (\boldsymbol{A}_{mp}^{\mathrm{T}})^{+} \boldsymbol{a} \right\|_{2}$$
(11)

1.2 自适应陷波器的等价离散状态空间方程

1.2.1 状态方程的建立

为了便于理论推导,定义

$$\Delta \boldsymbol{w}(n) = \boldsymbol{w}(n) - \boldsymbol{w}_0 \tag{12}$$

$$C^{-i}X(n)H_{si} = A_{si}X(n)$$
(13)

$$A_{si} = \begin{vmatrix} 0 & \cdots & 0 \\ \vdots & h_{\sin m} c^{-i} & \vdots \\ 0 & \cdots & 0 \end{vmatrix}$$
(14)

将R和e代入权矢量的迭代公式,并由以上的简 化定义,收敛方程变为

$$\Delta \boldsymbol{w}(n+1) = \Delta \boldsymbol{w}(n) - 2\mu C^{n} A_{mp} X(0) X^{\mathrm{T}}(0) \cdot \sum_{i=0}^{K} A_{si}^{\mathrm{T}} C^{-n} \Delta \boldsymbol{w}(n-i) - 2\mu C^{n} A_{mp} X(0) \cdot X^{\mathrm{T}}(0) \left(E - A_{mp}^{\mathrm{T}} (A_{mp}^{\mathrm{T}})^{+} \right) C^{-n} a \qquad (15)$$

为了进一步简化,定义
$$W(n) = [\Delta w(n), \Delta w(n-1), ..., \Delta w(n-K)]$$
 (16)

$$A_{1} = \begin{bmatrix} E_{2PN \times 2PN} & 0 \\ E_{2PNK \times 2PNK} & 0 \end{bmatrix}_{2PN(K+1) \times 2PN(K+1)}$$
(17)

$$A_{2} = \begin{bmatrix} A_{mp} X(0) X^{T}(0) A_{s0}^{T} & \cdots \\ 0 & \cdots \\ A_{mp} X(0) X^{T}(0) A_{sK}^{T} \\ 0 \end{bmatrix}_{2PN(K+1)}^{2PN(K+1)}$$
(18)

$$A = A_1 - 2\mu A_2 \tag{19}$$
$$B =$$

$$-2\mu \begin{bmatrix} A_{mp} X(0) X^{\mathsf{T}}(0) (E - A_{mp} {}^{\mathsf{T}} (A_{mp} {}^{\mathsf{T}})^{+}) \\ 0 \end{bmatrix}_{\substack{2PN(K+1) \\ \times 2PM}}$$
(20)

根据式(16)~(20)的简化定义,则收敛方程 (15)可以转化为

$$W(n+1) = C^n A C^{-n} W(n) + C^n B C^{-n} a \qquad (21)$$

该方程是一个离散时变系统,为了便于分析,可 以通过坐标变换将它变为一个时不变系统。定义坐 标变换为

$$V(n) = C^{-n+1} W(n)$$
(22)

经过坐标变换后,收敛方程变为

$$V(n+1) = AC^{\mathrm{T}}V(n) + BC^{-n}a \qquad (23)$$

式(23)即为自适应陷波算法等价离散系统的状态方程。

由式(1)可以推得

$$e(n) = X^{\mathrm{T}}(0)C^{-n}a + \sum_{i=0}^{K} H_{si}^{\mathrm{T}}X^{\mathrm{T}}(0)C^{-i}C^{-n}w(n-i)$$
(24)

为了进一步简化,定义

$$F = \begin{bmatrix} X^{\mathrm{T}}(0) A_{s0}^{\mathrm{T}} & \cdots & X^{\mathrm{T}}(0) A_{sK}^{\mathrm{T}} \end{bmatrix}_{\substack{M \times \\ 2PN(K+1)}} (25)$$

$$G_{M \times 2PM} = X^{\mathsf{T}}(0) (E - A_{mp}^{\mathsf{T}}(A_{mp}^{\mathsf{T}})^{+}) \quad (26)$$

将式(9)和式(12)代入式(24),根据式(25)和式 (26)的简化定义,并通过式(22)进行线性变换可得

$$e(n) = FC^{\mathrm{T}}V(n) + GC^{-n}a \qquad (27)$$

式(27)即为自适应陷波算法等价离散系统状态 空间方程的输出方程。

则自适应陷波算法等价离散系统状态空间方 程为

$$\begin{cases} V(n+1) = AC^{\mathsf{T}}V(n) + BC^{-n}a \\ e(n) = FC^{\mathsf{T}}V(n) + GC^{-n}a \end{cases}$$
(28)

2 自适应陷波器收敛速度的理论推导 和影响因素分析

2.1 收敛速度的理论推导

如果自适应陷波算法的目标函数J=0,即假设 系统可以完全收敛,将 $A_{mp}^{T}(A_{mp}^{T})^{+}a=a$ 这一条件 带入式(20),使得B=0,则系统的状态方程变为

$$\begin{cases} V(n+1) = AC^{\mathsf{T}}V(n) \\ V(n) = (AC^{\mathsf{T}})^n V(0) \end{cases}$$
(29)

假设 AC^{T} 可以对角化(若不能对角化,则可以进 行若当分解,推得相同的结论),即存在可逆矩阵D与对角矩阵 $\Lambda = \text{diag}(\lambda_1, \lambda_2, \cdots, \lambda_{2PN(K+1)}), 使得$

$$AC^{\mathrm{T}} = D^{-1}\Lambda D \qquad (30)$$

将式(30)带入式(29),并在等号两边取二范数, 根据二范数定义和相容原理可以推得

$$\|V(n)\|_{2} \leq \|\mathbf{\Lambda}^{n}\|_{2} \|D^{-1}\|_{2} \|D\|_{2} \|V(0)\|_{2} = \rho(\mathbf{A}\mathbf{C}^{\mathrm{T}})^{n} \|D^{-1}\|_{2} \|D\|_{2} \|V(0)\|_{2} \leq (31)$$

$$e^{t \cdot f_{s} \cdot \ln\rho(\mathbf{A}\mathbf{C}^{\mathrm{T}})} \|D^{-1}\|_{s} \|D\|_{s} \|V(0)\|_{s}$$

式中,:*ρ*(·)为矩阵的谱半径,系统指数收敛。进一步可以提取出该指数收敛系统的收敛率α为

$$\alpha = -f_{\rm s} \ln \rho (AC^{\rm T}) \tag{32}$$

式中: f_s 为系统的采样频率。收敛率 α 是评价自适应 陷波算法的重要指标,若 $\alpha > 0$,则系统收敛,且 α 越 大,收敛速度越快。为了更加直观反映系统收敛速 度,定义系统的时间常数 τ 为

$$\tau = \frac{1}{\alpha} = -\frac{1}{f_{\rm s} \ln \rho (AC^{\rm T})} \tag{33}$$

时间常数r的物理意义是,系统收敛曲线与纵轴 交点处的切线与时间轴的交点,如图2所示。当过 去r时刻以后,系统可以收敛到原来的37%;当过去 3r时刻,系统可以收敛到原来的5%,一般此时认为 系统已经完全收敛,因此,一般把3r称为系统的收敛 时间。

为了验证算法的正确性,本文选取4麦克风4扬 声器车内噪声主动控制系统进行仿真。系统传递函 数矩阵采用实际测量得到的传递函数。系统同时控 制发动机转速为3000 r·min⁻¹时的2阶与4阶噪声 (100 Hz与200 Hz)。对比收敛系数 $\mu = 2 \times 10^{-3}$ 与 $\mu = 2 \times 10^{-4}$ 收敛特性上的差别。

通过理论计算,发现 μ =2×10⁻³和 μ =2× 10⁻⁴时,系统的收敛时间分别为3 τ =11.6s和3 τ = 116.1s。与图3和图4所示的仿真结果完全一致,证

图 2 时间带载时息文 Fig.2 Meaning of time constant

图3 收敛系数等于2×10⁻³时仿真结果

明这种分析计算方法可行。

2.2 收敛速度的影响因素

使用式(32)所示自适应陷波器的收敛率α来评价系统的收敛速度,分别研究算法收敛系数、陷波频

(100 Hz)或者4阶(200 Hz)噪声。分析结果如图6 所示。

收敛系数μ是影响收敛率最大的因素,也是最 容易控制的系统参数。

在一般情况下, $A_2 \subseteq C^{\mathsf{T}}$ 乘积的谱半径不等于 0。同时, $A_1 \subseteq C^{\mathsf{T}}$ 乘积的谱半径等于1,所以有以下 结论

$$\lim_{\mu \to 0} \alpha = -f_s \lim_{\mu \to 0} \ln \rho (A_1 C^{\mathrm{T}} - 2\mu A_2 C^{\mathrm{T}})$$

= $-f_s \lim_{\mu \to 0} \ln \rho (A_1 C^{\mathrm{T}}) = 0$ (34)

$$\lim_{\mu \to +\infty} \alpha = -f_s \lim_{\mu \to +\infty} \ln \rho (A_1 C^{\mathrm{T}} - 2\mu A_2 C^{\mathrm{T}})$$

= $-f_s \lim_{\mu \to +\infty} \ln 2\mu \rho (A_2 C^{\mathrm{T}}) = -\infty$ (35)

式(34)、(35)说明,当收敛系数µ接近0时,系统 收敛会越来越慢,直至停止;当收敛系数µ越来越大 时,系统必然会在某一时刻发散,并且发散的剧烈程 度会随着µ的继续增大而越来越严重。

以2扬声器2麦克风系统为例进行仿真,算法同时控制发动机转速为3000 r·min⁻¹时的2阶与4阶噪声,分析收敛率α随着收敛系数μ的变化情况。结果如图5所示。

Fig.5 Convergence rate versus convergence factor

分析发现,随着收敛系数的减小,收敛率会越来 越小;如果收敛系数增大,当收敛系数增大到约 0.103时,系统就会不收敛,并且伴随着系数继续增 大,系统的发散情况会不断恶化。当收敛系数等于 0.07时,系统的收敛速度是最快的。每一个系统都 对应了这么一个最大收敛率与最优收敛系数,最大 收敛率表征系统收敛所能达到的最大速度,是评价 系统好坏的最重要指标。

2.2.2 算法陷波频率数的影响

本节分析只消除一个噪声的降噪效果。仍然使 用2.2.1节中的系统,但是只控制发动机的2阶

Fig.6 Convergence rate of different notch frequencies versus convergence factor

由图 6 可知,同时控制两个频率噪声时系统的 收敛速度近似等于系统控制单个频率时收敛较慢的 系统的收敛速度。为了让控制两个频率噪声的系统 拥有和控制一个频率噪声的系统相近的降噪速度, 可以使用非一致算法,也就是对应于分管不同频率 的权矢量 W,对应于不同的收敛系数μ。

具体的实现方法,是将收敛方程(2)中的收敛系数µ,更换为收敛系数矩阵µ,并且有

$$\boldsymbol{\mu}_{2PN \times 2PN} = \operatorname{diag}(\underbrace{\mu_1, \mu_1, \mu_2, \mu_2, \cdots, \mu_P, \mu_P}_{2P}, \mu_1, \mu_1, \cdots)$$

(36)

其中,μ_i对应于控制第*i*个频率所希望使用的收敛系数。利用相同的方法,就可以很容易推导出使用收敛系数矩阵时系统的降噪性能。

由图6可知,只控制频率为100 Hz或200 Hz的 陷波器系统的最优收敛系数大约分别为0.047 3和 0.225 4。因此,把这两个数值带入控制两个频率 的系统中,结果如图7中点划线所示,发现此时系 统的收敛率为11.78,收敛速度仍然比控制单频率 的系统慢,但是已经明显快于使用收敛系数标量的 系统。

仿真结果证明,当系统同时控制两个频率的噪 声时,两个频率上系统的降噪会互相影响,从而影响 到他们收敛的速度。因此,利用自适应陷波算法收 敛阶次噪声的时候,控制的频率不宜太多。

2.2.3 算法通道数的影响

使用多个扬声器和麦克风,可以显著增强车内 噪声主动控制系统的空间降噪范围,但是这将对系

Fig.7 Systems using non-uniform convergence coefficients

统的收敛速度产生很大的影响。对比了1扬声器1 麦克风系统与4扬声器4麦克风系统的降噪速度,两 个系统都只控制发动机转速为3000 r·min⁻¹时的2 阶(100 Hz)噪声。结果图8所示。

Fig.8 Convergence rate versus number of channels

由图8可以发现,4扬声器4麦克风系统的最快收 敛速度明显低于1扬声器1麦克风系统。这说明,在 车内噪声主动控制系统硬件匹配的时候,必须酌情权 衡系统收敛速度和系统降噪范围之间的矛盾关系。

2.2.4 次级通路特性的影响

对于单通道自适应滤波算法,当次级通路为纯 延时系统时,次级通路的延时越大,系统收敛越缓 慢[18]。另外,对次级通路矩阵乘以一个标量常数,并 不会影响到系统的最快收敛速度(仅仅改变最优收 敛系数的大小)。这些结论对于多通道自适应陷波 也是成立的。但是,对于多通道系统而言,次级通路 矩阵不仅可以乘以一个标量,也可以左乘或右乘一

个矩阵。譬如认为调高扬声器和麦克风的灵敏度, 就可以分别增大传递函数矩阵对应的行和列。

对4扬声器4麦克风系统进行分析,系统只控制 发动机转速为3000 r·min⁻¹时的2阶(100 Hz)噪声。 其中一个系统采用原始的传递函数,另一个分别对 系统前排麦克风和后排扬声器的敏感度进行翻倍。 结果如图9所示。

由图9可以发现,这种加权行为降低了系统最 快的收敛速度。但是,这种行为是完全可逆的。

2.2.5 参考信号特性的影响

自适应陷波算法的参考信号是谐波数列,相位 都为0,幅值均为1。为了验证一般性的参考信号, 假设系统的参考信号为

$$\tilde{X} = H_{2PN \times 2PN} X_{2PN \times N}$$
 (37)
矩阵 H 是一种旋转矩阵 满足

可逆矩阵H

$$H = \begin{bmatrix} a & b \\ -b & a \end{bmatrix}$$
(38)

把式(37)代入式(18)可得

$$A_{2} = \begin{bmatrix} (HA_{mp})X(0)X^{T}(0)(HA_{s0})^{T} & \cdots \\ 0 & \cdots \\ (HA_{mp})X(0)X^{T}(0)(HA_{sK})^{T} \end{bmatrix}$$
(39)

由式(39)可以认为,改变参考信号相当于系统的 次级传递函数发生了改变。又因为特定系统的收敛速 度仅和A₂,µ与f₆有关,因此可以得出结论,参考信号 对于系统收敛速度的影响等同于次级传递函数对于系 统收敛速度的影响。相对于改变扬声器麦克风的加权 值只能更改次级通路传递函数矩阵行向量列向量的方 法,通过改变参考信号改变次级通路的方式自由度更 高,也更能够挖掘出自适应陷波器的最优性能。

3 自适应陷波器稳态误差的理论推导 和影响因素分析

3.1 稳态误差的理论推导

稳态误差分析的前提是系统收敛,如果系统不 收敛,则系统的稳态误差会越来越大,没有所谓稳 态。假设系统收敛时,系统的状态空间 V(n)满足

$$V(n) = J_{2PN(K+1) \times 2PM} C^{-n} a \qquad (40)$$

J是一个待定矩阵。将该假设带入系统(28)的状态方程内,求取待定矩阵J可知,它是李雅普诺夫方程

$$AC^{\mathrm{T}}J - JC^{\mathrm{T}} + B = 0 \tag{41}$$

的解。将式(41)代入系统输出方程式(27)中,获得 系统稳定时的输出

$$\boldsymbol{e}(n) = (FC^{\mathrm{T}}J + G)C^{-n}\boldsymbol{a} \qquad (42)$$

定义

$$\beta = \left\| FC^{\mathsf{T}}J + G \right\|_2 \tag{43}$$

为自适应陷波器的稳态误差增益系数,其物理 意义是自适应陷波器对于车内噪声的传递函数的范 数。稳态误差增益 β 是评价自适应陷波算法的重要 指标, β 越小,则系统对车内噪声的抑制作用越好。 若系统的目标函数J=0,则 $\beta=0$ 。

通过理论公式推导和仿真可以得出

$$FC^{\mathrm{T}}J = 0 \tag{44}$$

因此可以得出

$$\begin{cases} e(n) = GC^{-n}a \\ \beta = \|G\|_{2} = \|X^{T}(0)(E - A_{mp}^{+}A_{mp})\|_{2} \end{cases}$$
(45)

由范数相容原理可以得到

$$\beta \geqslant \frac{\left\|\boldsymbol{e}(n)\right\|_{2}}{\left\|\boldsymbol{C}^{-n}\boldsymbol{a}\right\|_{2}} \tag{46}$$

由于不等号的存在,无法通过仿真的手段,利用 式(46)计算β的值。因此,只有利用式(45)通过理 论计算的方法,才能客观评估系统稳态误差的性能。

3.2 稳态误差的影响因素分析

由式(45)可以发现,当自适应陷波算法收敛时, 它的稳态误差性能仅仅同算法的参考信号X(0)和 次级通路传递函数A_{mp}有关,和算法的收敛系数、采 样频率没有关系。

使用式(45)所示的自适应陷波器输出方程和稳态误差增益β来评价系统的稳态误差,分别研究算法陷波频率数、算法通道数、次级通路特性、参考信号特性对稳态误差的影响。

3.2.1 算法陷波频率数的影响

以2扬声器4麦克风系统为例分析,发动机转速 为3000 r·min⁻¹,算法只控制100 Hz、200 Hz或者同 时控制100 Hz与200 Hz的噪声。计算他们的稳态 误差增益 G_1 、 G_2 和 G_3 。由于同时控制2个频率时系 统的 G_3 矩阵维数会产生变化。因此,分别截取 G_3 矩 阵中有关100 Hz与200 Hz的分量进行对比,获得 $G_{3,100Hz}$ 和 $G_{3,200Hz}$ 。对他们取二范数得到 β_1 、 β_2 、 β_3 、 $\beta_{3,100Hz}$ 和 $\beta_{3,200Hz}$ 。结果如表1所示。

表 1 稳态误差增益随陷波频率数的变化

Tab.1 Steady-state error gain versus notch frequency

至弦米刑	稳态误差增益
<i>杀</i> 纪 天 型	系数
只控制 100 Hz 噪声	0.9998
只控制 200 Hz 噪声	0.9898
同时控制100 Hz与200 Hz噪声	1.2966
同时控制100 Hz与200 Hz噪声(截取100 Hz部分)	0.9998
同时控制100 Hz与200 Hz噪声(截取200 Hz部分)	0.9898

如表1所示,虽然同时控制两个频率时,系统的 总稳态误差增益发生增长,但是细看每个频率的部 分,系统对每个频率的降噪效果与系统单独控制一 个频率的降噪效果完全相同。

3.2.2 算法通道数的影响

本节以1扬声器系统为例,发动机转速为3000 r·min⁻¹,算法只控制100 Hz的噪声,对比使用不同 个数麦克风时对应的系统稳态误差增益系数。在评 价的时候,本文只截取*G*矩阵中关于前排麦克风的 行,计算它的稳态误差增益系数。结果如表2 所示。

表 2 稳态误差增益系数随麦克风数量的变化

Tab.2 Steady-state error gain versus number of microphones

系统类型	稳态误差增益系数
1个麦克风	0
2个麦克风	0.8036
3个麦克风	0.8980
4个麦克风	0.9529

计算发现,随着麦克风数量的增加,系统的降噪效果会慢慢下降。说明每增加一个麦克风,就会分担扬声器的一部分降噪能力。实际系统硬件布放时,麦克风数量不应比扬声器数量多太多。

以4麦克风系统为例,算法只控制100 Hz的噪声。计算使用不同个数扬声器对应的系统稳态误差 增益系数。结果如表3所示。

由表3可知,当扬声器数量逐渐接近麦克风数

量时,系统稳态误差增益系数会逐渐降低。从另一 方面验证了麦克风数量不应比扬声器数量多太多这 一结论。

表 3 稳态误差增益系数随扬声器数量的变化

Tab.3 Steady-state error gain versus number of

speakers

系统类型	稳态误差增益系数
1个扬声器	1.0000
2个扬声器	0.9987
3个扬声器	0.9944
4个扬声器	0

3.2.3 次级通路特性的影响

通过对麦克风和扬声器进行加权,可以控制降 噪区的噪声能量分布,以此来改变系统的收敛性能。

以2扬声器4麦克风为例分析,算法只控制发动 机转速为3000 r·min⁻¹时100 Hz的噪声。对后排的 两个麦克风进行加权,结果如表4所示。

表 4 稳态误差增益系数随麦克风加权的变化

Tab.4 Steady-state error gain versus microphone weight

石坊井平	全局稳态误	前排稳态误	后排稳态误
杀纸抽还	差增益	差增益	差增益
无加权	0.9987	0.5416	0.8950
后排麦克风权值×2	0.9981	0.7777	0.7276

从降噪效果可以看出,加权以后,整体的稳态误 差改变不大。但是,前排的稳态误差略有增大,后排 的稳态误差略有减小。这说明,对麦克风进行加权 的确可以起到改变系统收敛性能的作用。

同样的,对扬声器进行加权。计算发现,对扬声器进行加权,完全不会改变车内声场的分布情况。 这是因为对扬声器进行加权,相当于对传递函数矩 阵Amp左乘一个可逆对角阵,此时式(45)变成

$$\beta = \|G\|_{2} = \|X^{\mathrm{T}}(0)(E - (\Lambda A_{mp})^{+} \Lambda A_{mp})\|_{2}$$
$$= \|X^{\mathrm{T}}(0)(E - A_{mp}^{+} A_{mp})\|_{2} \quad (47)$$

因此,对扬声器进行加权的行为对车内声场分 布完全没有影响。

3.2.4 参考信号特征的影响

将一般性信号变化公式(37)代入自适应陷波器 目标函数(8),可得

$$J = \frac{1}{2} \left\| \boldsymbol{a} + \left(\boldsymbol{H} \boldsymbol{A}_{mp} \right)^{\mathrm{T}} \boldsymbol{w}_{o} \right\|_{2}$$
(48)

于是最优加权矢量变为

$$\boldsymbol{w}_{0} = -\left[\left(HA_{mp}\right)^{\mathrm{T}}\right]^{+}\boldsymbol{a} \qquad (49)$$

由于假定了*H*为可逆矩阵,则系统的稳态误差 增益系数β则会变为

$$\beta = \| X^{\mathrm{T}}(0) (E - (HA_{mp})^{+} HA_{mp}) \|_{2}$$

= $\| X^{\mathrm{T}}(0) (E - A_{mp}^{+} A_{mp}) \|_{2}$ (50)

因此得到结论,改变参考信号特征等同于对扬 声器进行加权,对车内声场分布完全没有影响。

4 基于实验的噪声主动控制系统性能 分析

4.1 车内噪声主动控制系统实验平台构建

本文建立的车内噪声主动控制系统由两部分组成,一部分是基于dSPACE(实时仿真系统)的硬件 在环平台,用于自适应陷波算法的算法实现。另一 部分为基于DASP(信号测量设备)的降噪效果测量 实验平台,用于测量车内噪声。

4.1.1 基于dSPACE的硬件在环平台搭建

车内噪声主动消声实验平台以dSPACE实时仿 真系统为核心,对外围的软硬件进行合理配置,如图 10所示。

图 10 快速控制原型实验平台 Fig.10 Rapid control prototype test platform

硬件在环平台包括 MicroAutobox、扬声器系统和麦克风模块。本文使用的扬声器为原车的4个车载扬声器,麦克风布置在座位头枕上,与测试位置相同,如图11所示。

4.1.2 基于DASP的降噪效果测量实验平台搭建

为了评价主动消声系统对乘员舱内的降噪效 果,在车内布置了声压传感器测量车内噪声,测点位 置按照《声学汽车车内噪声测量方法》(GBT 18697 -2002)规定的传声器布放位置进行布放,在座椅头 枕侧面,乘员耳旁共布置4个测点,分别为测点1、测 点2、测点3、测点4,具体位于驾驶员座、副驾座、左 后座、右后座,如图11所示。

图 11 系统测点布置 Fig.11 Layout of system measuring points

4.1.3 次级噪声传递函数估计

对于搭载于实车上的主动消声系统来说,次级 通路主要包含控制器外围电路、功放/扬声器(次级 声源)、乘员舱声腔、麦克风(误差传感器)几个环节, 信号的传递关系如图12所示。

在主动消声系统的控制算法中,次级通路通常 使用单位脉冲响应函数来建模。为此,可以通过控 制器输出限带宽白噪声信号y(次级通路输入信号), 然后获得麦克风输出信号e(次级通路输出信号),利 用输入、输出信号通过相关辨识法^[17]来计算次级通 路的单位脉冲响应函数。

图 12 系统次级通路传递函数构成

4.2 基于实验的系统性能分析

4.2.1 陷波频率数对收敛速度的影响

第2节的仿真中发现,陷波频率数越多,系统的 收敛速度就会越慢。本小节采用2扬声器2麦克风 系统,发动机转速为3000 r·min⁻¹,收敛系数取 μ = 2×10^{-2} 。通过实验,分析同时控制发动机的2阶和 4阶频率、只控制2阶频率和只控制4阶频率的系统 的收敛时间。结果如图13所示。

图13 陷波频率数对收敛速度的影响

由图13可以看出,只控制2阶频率时,系统的收 敛时间大约为1.0s。只控制4阶频率和同时控制两 个频率时,系统的收敛时间大致相同,均为1.5s。 此实验说明当系统控制多个频率时,收敛速度会慢 于只控制单个频率的系统,并且收敛速度近似等于 系统控制单个频率时收敛速度较慢的系统。

4.2.2 通道数对收敛速度的影响

采用1扬声器1麦克风系统和4扬声器4麦克风 系统分别进行实验,分析通道数对收敛速度的影响。 发动机转速为3000 r·min⁻¹,只控制发动机的2阶噪 声,收敛系数对应的取 $\mu=5 \times 10^{-3}$ 和 $\mu=2 \times 10^{-1}$ 。结果如图14所示。

由图14可以看出,1扬声器1麦克风系统的收敛 时间大概需要0.5 s。而4扬声器4麦克风系统的收 敛时间则大约需要2.5 s,收敛速度远远小于1扬声 器1麦克风系统。由此说明了通道数越多,系统的 收敛速度越慢。

5 结论

首先建立了自适应陷波算法的等价离散系统状态空间方程,并利用该方程建立了系统收敛性能与稳态误差的评价指标:收敛率和稳态误差增益。

针对这两个评价指标,分别研究了算法收敛系 数、陷波频率数、算法采样频率、算法通道数、次级通 路特性、参考信号特性对系统性能的影响,并且通过 实车实验对仿真结果进行了验证。

5.1 收敛速度的影响因素分析

(1)当收敛系数为0时,系统不收敛也不发散; 当收敛系数超过某个值时,系统将发散,并且收敛系数越大,发散情况越严重;系统存在一个最优收敛系数使得系统的收敛速度最快。

(2)控制多个频率时,系统的收敛速度近似等于 收敛单个频率最慢的系统。可以利用非一致算法提 升系统收敛速度。

(3)增加麦克风和扬声器的数量,会减慢系统收敛的速度。

(4)通过对扬声器麦克风进行加权,或通过其他 方式改变次级通路,都可能改变系统的收敛速度,并 且这种行为是可逆的。

(5)改变参考信号对系统收敛速度的影响等同 于改变系统的次级通路。

5.2 稳态误差的影响因素分析

(1)系统同时控制多个频率时,对某个频率的稳态误差等同于系统单独控制这个频率的稳态误差。

(2)增加麦克风数量,系统对某一个麦克风位置的稳态误差会升高;增加扬声器数量,系统对某一个 麦克风位置的稳态误差会降低。

(3)对麦克风加权,权重高的麦克风附近稳态误 差会降低。对扬声器加权不影响稳态误差。

(4)收敛系数、采样频率和参考信号特征对稳态 误差没有影响。

参考文献:

- KUO S M, MORGAN D R. Active noise control: a tutorial review[J]. Proceedings of the IEEE, 1999, 87(6): 943.
- [2] TSENG W K, RAFAELY B, ELLIOTT S J. Combined feedback - feedforward active control of sound in a room [J]. Journal of the Acoustical Society of America, 1998, 104(6): 3417.
- [3] ZHANG Y, CHAMBERS J A, SANEI S, et al. A new variable tap-length LMS algorithm to model an exponential decay impulse response [J]. Signal Processing Letters, IEEE,

2007, 14(4): 263.

- [4] GU Y, TANG K, CUI H, et al. Convergence analysis of a deficient-length lms filter and optimal-length sequence to model exponential decay impulse response[J].IEEE Signal Processing Letters, 2003, 10(1): 4.
- [5] 李宁.LMS自适应滤波算法的收敛性能研究与应用[D].哈尔滨:哈尔滨工程大学,2009.
 LI Ning. Convergence performance analysis and applications of the adaptive least mean square (LMS) algorithm[D].Harbin: Harbin Engineering University, 2009
- [6] GU Y, TANG K, CUI H. LMS algorithm with gradient descent filter length [J]. Signal Processing Letters, IEEE, 2004, 11(3): 305.
- [7] LI N, ZHANG Y, ZHAO Y, et al. An improved variable taplength LMS algorithm [J]. Signal Processing, 2009, 89 (5): 908.
- [8] ZHANG M, LAN H, SER W. On comparison of online secondary path modeling methods with auxiliary noise [J].
 IEEE Transactions on Speech and Audio Processing, 2005, 13 (4): 618.
- [9] ZHANG M, LAN H, SER W. Cross-updated active noise control system with online secondary path modeling [J]. IEEE Transactions on speech and audio processing, 2001, 9(5): 598.
- [10] NARASIMHAN S V, VEENA S, LOKESHA H. Variable step-size Griffiths' algorithm for improved performance of feedforward/feedback active noise control [J]. Signal, Image and Video Processing, 2010, 4(3): 309.
- [11] PAZAITIS D I, CONSTANTINIDES A G. A novel kurtosis driven variable step-size adaptive algorithm [J]. Signal Processing, IEEE Transactions on, 1999, 47(3): 864.
- [12] MATHEWS V J, XIE Z. A stochastic gradient adaptive filter with gradient adaptive step size [J]. Signal Processing, IEEE Transactions on, 1993, 41(6): 2075.
- [13] KERATIOTIS G, LIND L. Optimum variable step-size sequence for LMS adaptive filters [J]. Vision, Image and Signal Processing, IEE Proceedings, 1999, 146(1): 1.
- [14] PALEOLOGU C, CIOCHINA S, BENESTY J. Variable step-size NLMS algorithm for under-modeling acoustic echo cancellation[J]. IEEE Signal Processing Letters, 2008, 15: 5.
- [15] WU X, GAO L, TAN Z. An improved variable step size LMS algorithm [C]// International Conference on Measurement, Information and Control. [S.L.]:IEEE, 2013:533-536.
- [16] 任自钊,徐建城, 闫永鹏. 一种改进的变步长 LMS 自适应滤 波算法及性能分析[J]. 计算机应用研究, 2011, 28(3):954.
 REN Zizhao, XU Jiancheng, YAN Yongpeng. Improved variable step size LMS adaptive filtering algorithm and its performance analysis [J]. Application Research of Computer, 2011, 28(3):954.
- [17] 陈克安.有源噪声控制[M].北京:国防工业出版社, 2003.CHEN Kean. Active noise control [M]. Beijing: National Defend Industry Press, 2003.
- [18] 方崇智,萧德云.过程辨识[M].北京:清华大学出版社,1988.
 FANG Chongzhi, XIAO Deyun. Process identification [M]. Beijing: Tsinghua University Press,1988.