基于分区综合改正数的北斗卫星导航系统和GPS 组合的动态精密单点定位

王阿昊^{1,2},陈俊平^{2,3,4},张益泽^{2,5},王解先¹,王 彬²

 (1. 同济大学 测绘与地理信息学院,上海 200092;2. 中国科学院上海天文台,上海 200030;3. 中国科学院大学 天文与空间科学学院, 北京 100049;4. 上海市空间导航与定位技术重点实验室,上海 200030;5. 东京海洋大学 海洋技术学院,东京 1358533)

摘要:提出一种基于分区综合改正数的北斗卫星导航系统 (BDS)和GPS双系统组合(BDS/GPS)动态精密单点定位 (PPP)模型。选取15个MGEX(multi-GNSS experiment)测 站作为参考站或用户站进行试验,统计分析了20d的BDS/ GPS动态精密单点定位的精度及收敛性。结果表明,BDS双 频动态精密单点定位平均13min收敛至三维定位误差小于1 m,平均平面精度和平均高程精度分别优于0.15m和0.30m; BDS/GPS双频动态精密单点定位平均3min收敛至三维定 位误差小于1m,平均平面精度和平均高程精度分别优于 0.07m和0.15m。

关键词:北斗卫星导航系统(BDS)和GPS双系统组合
(BDS/GPS);分区综合改正数;精密单点定位(PPP);收敛时
间;定位精度
中图分类号: P228.41
文献标志码:A

BDS/GPS Combined Kinematic Precise Point Positioning Based on Zone Corrections

WANG Ahao^{1,2}, CHEN Junping^{2,3,4}, ZHANG Yize^{2,5}, WANG Jiexian¹, WANG Bin²

 College of Surveying and Geo-Informatics, Tongji University, Shanghai 200092, China; 2. Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030, China;
 School of Astronomy and Space Science, University of Chinese Academy of Sciences, Beijing 100049, China;
 Shanghai Key Laboratory of Space Navigation and Positioning Techniques, Shanghai 200030, China; 5. College of Marine Technology, Tokyo University of Marine Science and Technology, Tokyo 1358533, Japan)

Abstract: In this paper, a kinematic precise point positioning (PPP) model of BeiDou System (BDS)/GPS

using zone corrections is proposed. Fifteen MGEX (multi-GNSS experiment) stations are selected as reference stations or evaluation stations. Then, the accuracy and the convergence of kinematic precise point positioning of BDS/GPS are analyzed based on 20-day data. Results show that BDS dual-frequency kinematic precise point positioning converges to 1 m in 13 min on average and the coordinate accuracy reaches 0.15 m in horizontal and 0.30 m in vertical component after convergence. The BDS/GPS dual-frequency kinematic precise point positioning shows better accuracy and shorter converge time, which converges to 1 m in 3 min on average and the coordinate accuracy is less than 0.07 m and 0.15 m in horizontal and vertical component, respectively.

Key words: BeiDou System(BDS) and GPS combined (BDS/GPS); zone correction; precise point positioning (PPP); convergence time; positioning accuracy

北斗卫星导航系统(BDS)是中国自主研发、独 立运行的全球卫星导航系统,在系统设计时就统一 考虑了基本服务(Legacy PNT)和广域差分服务 (WADS)的一体化,为用户提供开放和授权两种服 务。开放服务为用户免费提供基本导航信息,而授 权服务则通过GEO(geostationary earth orbit)卫星 向授权用户广播差分和完好性等信息^[1-4]。

北斗广域差分系统早期播发的参数主要是等效 钟差改正数和服务于单频用户的格网电离层改正 数^[5-7]。等效钟差计算是利用CNMC(code noise and multipath correction)^[8]平滑后的伪距观测值,该观测 值不仅包含卫星钟差的改正还包含卫星轨道径向误

收稿日期: 2019-03-16

基金项目:国家重点研发计划(2018YFB0504300);国家自然科学基金(11673050)

第一作者:王阿昊(1992—),男,博士生,主要研究方向为卫星大地测量与应用。E-mail:ahao_wang@tongji.edu.cn

通信作者:陈俊平(1980—),男,研究员,博士生导师,工学博士,主要研究方向为卫星导航高精度数据处理。

E-mail:junping@shao.ac.cn.

差的改正。基于以上广域差分信息和北斗广播星历 能提高50% 双频伪距用户定位精度,提高30% 单频 伪距用户定位精度。整体而言,三维定位误差仍大 于1m^[5]。北斗系统正式服务后,进行了一系列升 级。新增轨道改正数,修正等效钟差模型中没有考 虑的轨道切向和法向分量上的误差,使用户实时伪 距定位95%精度可以达到水平方向优于1.0m,高 程方向优于1.5 m^[9]。基于高精度载波相位观测值 计算实时轨道改正和钟差改正,使得用户差分距离 误差(UDRE)达到0.5 m^[5,9]。在北斗广播星历、轨 道改正数和钟差改正数的基础上,播发高精度载波 相位分区综合改正数[10-13],使得用户实时动态精密 单点定位(PPP)平均在7 min 内收敛至1 m,收敛后 平面精度优于0.1m,高程精度优于0.2m^[10-11]。对 于单频用户,基于实时动态分区改正数的精密单点 定位三维误差可在20min内收敛至0.8m,收敛后 的定位精度在水平方向优于0.3m,在高程方向优于 $0.5 \,\mathrm{m}^{[12]}$

在2020年BDS建成前,在轨运行卫星数仍较 少,重点服务区域仍集中在亚太地区,对于山区、城 市等信号遮挡严重的区域,BDS可见卫星数急剧下 降,将大大降低BDS分区综合改正数定位服务的能 力,而多系统融合的全球导航卫星系统(GNSS)精 密单点定位可以通过增加可见卫星数、完善卫星几 何构型来有效提高收敛速度和定位精度。针对以上 不足,提出了BDS和GPS双系统组合(BDS/GPS) 分区综合改正数算法。首先,介绍了分区综合改正 数的计算原理,提出基于分区综合改正数的BDS/ GPS 精密单点定位模型;然后,选取15个MGEX (multi-GNSS experiment)测站作为参考站或用户 站,分别对BDS单系统、GPS单系统和BDS/GPS进 行实时动态精密单点定位,以定位精度和收敛速度 为性能指标进行评估;最后,分析了分区综合改正数 的播发频度、用户站与分区中心距离等因素对用户 定位的影响。

1 基于分区综合改正数的 BDS/GPS 精密单点定位模型

1.1 分区综合改正数

目前北斗广域差分系统播发的星基增强参数 (如等效钟差、轨道改正数)均基于伪距观测值进行 计算,对于采用相位观测值的实时高精度定位用户, 上述增强参数的精度不高,制约了相位模糊度参数 的解算精度,导致定位不收敛或者收敛时间较长。 考虑到信号传播误差在一定区域内具有大致相同的 特性,根据北斗测站在国内的分布情况,北斗广域分 米级星基增强系统将中国范围划分为18个分区(分 区示意图见文献[14]中的图1),利用每个分区内多 个参考站的相位观测值计算一种新型星基增强参 数,即分区综合改正数。授权用户在观测值上直接 扣除分区综合改正数,仅利用北斗广播星历即可实 现实时动态分米级定位,该技术不仅有效提高了北 斗用户的定位精度,还大幅缩短了定位收敛时间。

任意历元参考站*i*对卫星*j*在频点*f*的伪距观测 值、相位观测值分别为

$$P_{i,j}(f) = \rho_{i,j} + c(d_{t_i} - d_{t_j}) + I_{i,j}(f) + T_{i,j} + \delta_{i,j}$$

$$L_{i,j}(f) = \rho_{i,j} + c(d_{t_i} - d_{t_j}) + N_{i,j}(f) - I_{i,j}(f) + T_{i,j} + v_{i,j}$$
(1)

式中: $P_{i,j}(f)$ 、 $L_{i,j}(f)$ 分别为伪距观测值、相位观测 值; $\rho_{i,j}$ 为卫星与测站两点间的理论几何距离;c为光 速; $d_{i,j}$, $d_{i,j}$ 分别为未知的测站钟差和卫星钟差; $N_{i,j}(f)$ 为相位观测值的模糊度; $I_{i,j}(f)$ 为与频率有 关的电离层延迟改正; $T_{i,j}$ 为基于理论模型的对流层 延迟; $\delta_{i,j}$, $v_{j,i}$ 为剩余误差,包含多路径、噪声等误差。

式(1)中,固定测站精确坐标,由广播星历求得 卫星轨道和钟差,并利用经验模型对对流层延迟进 行估计,电离层延迟采用双频无电离层组合进行消 除,可得伪距观测值、相位观测值的综合改正数 $\Delta_{P_{e}(f)}, \Delta_{L_{e}(f)},$ 计算式如下所示:

$$\Delta_{P_{i,j}(f)} = d_{\rho_{i,j}} + cd_{t_i} - c\Delta_{d_{t_j}} + \Delta_{T_{i,j}} + \delta_{i,j}$$

$$\Delta_{L_{i,j}(f)} = d_{\rho_{i,j}} + cd_{t_i} - c\Delta_{d_{t_j}} + N_{i,j}(f) + \Delta_{T_{i,j}} + v_{i,j}$$
(2)

式中:d_{θi}, Δ_{di}分别为参考站*i*受卫星轨道、钟差误差 影响造成的观测误差;Δ_{Ti},为经对流层模型改正后的 剩余误差。伪距综合改正数主要包含了卫星轨道、 卫星钟差、测站钟差以及对流层延迟的剩余误差,而 相位综合改正数则还包含了相位的模糊度信息。

伪距观测值和相位观测值的综合改正数一并称 为分区综合改正数^[12-14]。

1.2 基于分区综合改正数的 BDS/GPS 精密单点定 位模型

参照式(1),在相同历元,用户站u对卫星j在频 点f的伪距观测值、相位观测值分别为

$$P_{u,j}(f) = \rho_{u,j} + c(d_{t_u} - d_{t_j}) + I_{u,j}(f) + T_{u,j} + \delta_{u,j}$$
$$L_{u,j}(f) = \rho_{u,j} + c(d_{t_u} - d_{t_j}) + N_{u,j}(f) -$$

$$I_{u,j}(f) + T_{u,j} + v_{u,j}$$
(3)

式(3)中的变量含义同式(1),只是测站由参考 站*i*变为用户站*u*。利用广播星历求得卫星轨道、钟 差并代入式(3),然后利用经验模型对对流层延迟进 行改正,通过双频无电离层组合消除电离层延迟, 可得

$$P_{u,j}(f) = \rho'_{u,j} + d_{\rho_{u,j}} + cd_{t_u} - c\Delta_{d_{t_j}} + \Delta_{T_{u,j}} + \delta_{u,j}$$

$$L_{u,j}(f) = \rho'_{u,j} + d_{\rho_{u,j}} + cd_{t_u} - c\Delta_{d_{t_j}} + N_{u,j}(f) + \Delta_{T_{u,j}} + v_{u,j}$$
(4)

式中: $\rho'_{u,j}$ 为广播星历计算得到的星地距离; $d_{\rho_{u,j}}$ 为用 户站 u 受卫星轨道误差影响而造成的观测误差。利 用式(2)得到的伪距、相位综合改正数, 对式(4)进行 修正, 得到

$$P_{u,j}(f) = \rho'_{u,j} + d_{\rho_{u,j}} + cd_{t_u} - c\Delta_{d_{t_j}} + \Delta_{T_{u,j}} - \Delta_{P_{i,j}(f)} + \delta_{u,j}$$

$$L_{u,j}(f) = \rho'_{u,j} + d_{\rho_{u,j}} + cd_{t_u} - c\Delta_{d_{t_j}} + N_{u,j}(f) + \Delta_{T_{u,j}} - \Delta_{L_{i,j}(f)} + v_{u,j} \quad (5)$$

根据式(2),整理后为

$$P_{u,j}(f) = \rho'_{u,j} + (d_{\rho_{u,j}} - d_{\rho_{i,j}}) + c(d_{t_u} - d_{t_i}) + \Delta_{T_{u,j}} - \Delta_{T_{i,j}} + \delta_{u,j}$$

$$L_{u,j}(f) = \rho'_{u,j} + (d_{\rho_{u,j}} - d_{\rho_{i,j}}) + c(d_{t_u} - d_{t_i}) + (N_{u,j} - N_{i,j}) + \Delta_{T_{u,j}} - \Delta_{T_{i,j}} + v_{u,j}$$
(6)

卫星钟差误差 $c\Delta_{d_i}$ 得到消除;用户站距离参考站小 于 2 000 km 时, $d_{\rho_{u,j}} - d_{\rho_{i,j}}$ 的影响在毫米级,可以忽 略;参考站的站钟差 $cd_{i,i}$ 可以被用户站的钟差 $cd_{i,i}$ 完 全吸收,成为新的站钟 $cd_{\bar{i}_u}$;在参考站和用户站都没 有发生周跳的情况下 $N_{u,j} - N_{i,j}$ 将重新组合成新的模 糊度参数 $\overline{N}_{u,j}$ 。通过上述分析,式(6)可重新写为^[13]

$$P_{u,j}(f) = \rho'_{u,j} + cd_{\tilde{t}_u} + \Delta_{T_{u,j}} - \Delta_{T_{i,j}} + \delta_{u,j}$$

$$L_{u,j}(f) = \rho'_{u,j} + cd_{\bar{t}_u} + \bar{N}_{u,j} + \Delta_{T_{u,j}} - \Delta_{T_{u,j}} + v_{u,j}$$
(7)

在多系统GNSS融合定位中,需要考虑系统间时间偏差和频间偏差的影响^[15],对于BDS/GPS精密单点定位,BDS以及GPS卫星分别经过各自分区综合改正数修正后的观测方程为

$$P_{u,j,c}(f) = \rho'_{u,j,c} + cd_{\tilde{i}_{u}} + \Delta_{T_{u,j,c}} - \Delta_{T_{i,j,c}} + \delta_{u,j,c}$$

$$L_{u,j,c}(f) = \rho'_{u,j,c} + cd_{\tilde{i}_{u}} + \overline{N}_{u,j,c} + \Delta_{T_{u,j,c}} - \Delta_{T_{i,j,c}} + v_{u,j,c}$$

$$P_{u,j,G}(f) = \rho'_{u,j,G} + cd_{\tilde{i}_{u}} + D_{C,G} + \Delta_{T_{u,j,G}} - \Delta_{T_{i,j,G}} + \delta_{u,j,G}$$

$$L_{u,i,G}(f) = \rho'_{u,i,G} + cd_{\tilde{i}} + D_{C,G} + \overline{N}_{u,i,G} + cd_{\tilde{i}} + cd_{\tilde{i}} + D_{C,G} + \overline{N}_{u,i,G} + cd_{\tilde{i}} + dd_{\tilde{i}} +$$

$$\Delta_{T_{u,j,G}} - \Delta_{T_{i,j,G}} + v_{u,j,G} \tag{8}$$

式中:C和G分别表示BDS和GPS卫星;D_{C,G}为GPS卫星相对于BDS的系统间偏差。

2 数据处理策略

在数据预处理阶段,首先需要对钟跳进行探测 与修复,防止因钟跳产生的观测值跳变被误判为周 跳^[16],然后采用 TurboEdit 方法进行实时周跳探 测^[17-18]。值得注意的是,计算分区综合改正数时,为 了保证相位改正数的连续性,还需对探测出的周跳 采用多项式拟合法进行修复。

在进行精密单点定位时利用双频无电离层组合 消除电离层延迟一阶项误差,采用卡尔曼滤波进行 参数估计,待估参数包括测站位置、接收机钟差、系 统间偏差以及各卫星在连续观测弧段内的模糊度信 息。由于对流层延迟剩余误差已包含在分区综合改 正数内,因此不估计对流层延迟湿分量^[14]。本研究 中进行实时动态精密单点定位,卫星轨道和钟差采 用 brdm 广播星历,不需要对卫星端的 PCO(phase center offset)/PCV (phase center variation)进行改 正。观测值权重的设置采用高度角定权模型,值得 注意的是,与MEO (medium earth orbit)和 IGSO (inclined geosynchronous orbit)卫星相比,北斗GEO 卫星具有静地和高轨特性,广播星历的轨道精度较 低,故对GEO卫星观测值进行降半权处理。具体的 数据处理策略如表1所示。表1中,W为权重,e为卫 星高度角。

3 模型分析

3.1 试验数据及方案

北斗分区综合改正数利用了北斗系统的监测 站,依据测站分布,定义每个分区的中心位置及其服 务范围。每个分区设置一个主参考站以及若干个冗 余测站,综合实时计算每个分区的分区综合数改正 数^[13]。为验证所提BDS/GPS分区综合改正数模 型,采用离线模拟实时处理的方式进行试验。首先, 定义部分参考站为分区的中心,实时计算该分区的 BDS/GPS分区综合改正数;然后,将计算的改正数 通过数据流的方式播发给该分区内模拟的实时用户 站;最后,用户站接收到分区综合改正数后,结合广 播星历,以精密单点定位的模式进行单站模拟动态 定位。 表1 数据处理策略

	Tab.1 Data processing strategies	
	处理策略	
参数	分区综合改正数计算	基于分区综合改正数的精密单点 定位计算
观测量	BDS/GPS的伪距和载波相位	BDS/GPS的伪距和载波相位
信号	BDS:B1/B2, GPS:L1/L2	BDS:B1/B2, GPS:L1/L2
数据采样时间间隔/s	30	30
截止高度角/(°)	10	10
先验约束		伪距1,载波相位0.01
加测估力手		$W = 1, e > 30^{\circ}$
观测值权里		$W = 2\sin e, e \leq 30^\circ$
卫星轨道、钟差	广播星历	广播星历
对流层延迟	GPT2w(气象参数) + SAAS(对流层模型) + VMF1(投影函数)	GPT2w + SAAS + VMF1
固体潮、海潮、相对论、地球自转	IERS 2010 (国际地球自转服务) ^[19]	IERS 2010
相位缠绕	模型改正	模型改正
测站坐标	固定	估计,先验约束10km
接收机钟差	近似值	估计,先验约束30km
模糊度	概略值	估计,浮点解
系统差		估计,BDS作为参考

取依据为参考站与用户站间距离不超过2000 km,以确保单系统解算时2个测站间平均共视卫星数不少于4颗。用户站与分区中心参考站的距离如表2所示,平均距离为906 km。参考站坐标采用事后精密坐标文件提供的精确坐标,精度优于2 cm。

测试设计了 BDS 单系统、GPS 单系统以及 BDS/GPS3种方式,并以收敛速度和定位精度作为 性能指标进行分析。 3.2 收敛速度与定位精度

北斗广域分米级星基增强系统将中国范围划分 为18个分区,分区综合改正数的服务半径为1000

	表2 用尸站与分区甲心参考站的距离						
Tab. 2	Distance	between	reference	stations	and		
	evaluatio	n stations					

分区中心参考站	用户站	距离 / km
HKSL	HKWS	43
	STR1	456
MOBS	PARK	613
	CEDU	1 213
LIODS	TID1	832
HOBZ	STR2	841
COCO	XMIS	985
LAUT	KOUC	1 419
KARR	ALIC	1 749

km,不仅可覆盖全国还能辐射到周边邻近国家^[13], 首先选取所有距离分区中心1000 km范围内的用户 站 20 d的数据进行试验。图 2 为 2019 年 DOY(年绩 日) 32 STR1 和 TID1 用户站双频动态精密单点定 位的结果。从图 2 可以看出,在 BDS/GPS 动态精密 单点定位中,2 个用户站能在较短时间内收敛至三维 定位误差小于1 m,而单系统的收敛时间明显更长, 其中 GPS 单系统相对 BDS 单系统表现更优。BDS 单系统和 GPS 单系统动态精密单点定位收敛后的 定位结果稳定在 0.6 m以内,而 BDS/GPS 的定位结 果稳定在 0.4 m 以内,定位精度较单系统有较大程 度的提升。整体而言,采用分区综合改正数,可以有 效消除各种共模误差,大大缩短收敛时间,提高实时 动态精密单点定位的精度。

Fig. 2 Daily kinematic dual-frequency PPP results based on zone corrections

为分析定位性能,将N(南北)、E(东西)、U(高 程)3个方向综合的三维定位误差收敛至1m后不 再超出1m视为坐标收敛。对于BDS单系统因观 测问题(可见卫星数较少)而导致的异常定位结果 (小于1%)进行粗差剔除(阈值为2m),统计6个用 户站20d的双频动态精密单点定位收敛时间(平均 值)和定位误差(均方根值),结果如表3所示。从 统计结果可知,BDS/GPS双频动态精密单点定位 的平均收敛时间为3.2min,较BDS单系统的13.3 min和GPS单系统的7.4min有很大程度提高; BDS/GPS在N、E、U方向上的平均定位精度分别 优于4cm、5cm和15cm,明显好于单系统。GPS 单系统双频动态精密单点定位精度全面优于BDS 改正数精度以及星座几何强度的影响较大,目前 BDS可用卫星数明显少于GPS,导致几何构型不 如GPS好。整体而言,在1000 km服务范围内,基 于分区综合改正数的BDS/GPS组合双频动态精密 单点定位的三维定位精度最高(15.7 cm),GPS单 系统次之(24.5 cm),BDS单系统最低(29.6 cm)。 值得注意的是,HKWS用户站的BDS/GPS定位精 度明显高于其他用户站且主要表现在高程方向,主 要原因是HKWS用户站与播发分区综合改正数的 参考站HKSL的距离很近,仅为43 km,站间共模误 差相关性较强,与其他距离在456 km至985 km的 用户站相比,HKWS用户站接收的分区综合改正数 的修正效果最佳,故三维定位精度最优,可达到 6.8 cm。

1	Tab.3	Coord	linate e	rror ai	nd conv	vergenc	e time	of kine	ematic o	dual-fr	equenc	y PPP f	or six	users	
									定位	精度					
如叶学臣	42	蚁时间/	mm	1	N方向/c	m	I	E方向/c	m	τ	J方向/c	m		三维/cm	1
侧站	BDS	GPS	BDS / GPS	BDS	GPS	BDS / GPS	BDS	GPS	BDS / GPS	BDS	GPS	BDS / GPS	BDS	GPS	BDS / GPS
HKWS	5.7	9.0	2.6	6.2	9.8	2.5	9.5	10.2	3.4	16.4	15.8	5.3	20.0	21.2	6.8
STR1	23.9	4.2	3.2	11.2	7.6	4.3	10.0	10.3	4.4	28.5	18.2	13.7	32.2	22.2	15.0
PARK	16.7	6.7	3.3	11.3	10.3	4.6	16.6	12.9	5.2	29.7	23.6	18.0	35.8	28.8	19.3
TID1	9.8	7.3	3.1	12.2	6.5	4.0	14.1	11.6	4.9	27.2	22.7	16.8	33.0	26.2	18.0
STR2	12.3	9.7	3.4	12.0	7.9	4.5	14.4	12.3	5.1	29.0	23.3	17.5	34.5	27.5	18.8
XMIS	11.6	7.6	3.6	5.1	5.3	3.7	9.0	11.1	5.9	19.2	17.0	14.6	21.8	21.0	16.2
平均值	13.3	7.4	3.2	9.7	7.9	3.9	12.3	11.4	4.8	25.0	20.1	14.3	29.6	24.5	15.7

表3 6个用户站20d 双频动态精密单点定位误差及收敛时间

3.3 服务范围与模型性能

上述试验均在用户距离分区中心1000 km范 围内进行,为更全面分析服务范围对用户定位的影 响,突出BDS/GPS精密单点定位的优势,增加3组 距离介于1000~1800 km的定位数据。分别进行 BDS单系统和BDS/GPS动态精密单点定位,其中 CEDU 用户站距离分区中心 MOBS 1 213 km、 KOUC 用户站距离分区中心 LAUT 1 419 km、 ALIC 用户站距离分区中心 KARR 1 749 km。图 3 为2019年DOY 32 CEDU、KOUC和ALIC用户站 双频动态精密单点定位结果。可以看到,随着用户 站与分区中心距离的增加,BDS单系统的可用分区

改正数个数逐步减少,从而定位性能无法保证。其 中,KOUC用户站在前3h内由于用户站和参考站 的共视卫星数目少,每个历元可用分区综合改正数 仅有4、5个,导致每个历元定位结果始终无法收敛 至1m以内;ALIC用户站虽然共视卫星数与 KOUC 用户站基本一样,但因距离长达约1800 km,致使用户站与参考站间公共误差的一致性大大 降低,有近一半历元的三维定位误差大于1m。利 用BDS/GPS分区综合改正数定位,不仅能在BDS 卫星数较少的情况下迅速收敛,还能在1800 km范 围内获得高精度定位结果,定位稳定性也大大优于 单系统。

Fig. 3 Daily kinematic dual-frequency PPP results

进一步地,采用如图1所示的15个MGEX测站 2019年20d的数据,每次选取一个参考站作为分区 中心计算分区综合改正数,搜索距离其1800 km范 围内的其余所有参考站作为用户站进行 BDS/GPS 双频动态精密单点定位计算,统计每个用户站的平 均收敛时间和定位精度分别与分区中心距离的对应 关系。

图4为满足上述搜索条件的28个用户站BDS/GPS 双频动态精密单点定位三维误差(见图4a)和平均收敛时间(见图4b)与分区综合改正数服务范围的统计关系。需要说明的是,将因观测数据质量问题而造成收敛时间大于30 min的结果视为粗差进行剔除,其占比不超过1%。从图4可以看出,在1800 km范围内采用分区综合改正数,BDS/GPS 双频动态精密单点定位的三维误差均方根值不超过0.30

m,平均定位精度优于0.18 m。采用线性函数对定 位精度与服务范围的关系进行拟合,发现用户站的 定位精度与服务范围呈现一定的正相关性。这可能 是由于随着用户站与分区中心距离的增大,用户站 与参考站间的各项同性公共误差的相关性降低,与 测站位置相关的对流层剩余误差的差异变大,导致 分区综合改正数的精度下降,对用户定位的精度与 稳定性造成一定影响。对于定位的平均收敛时间, 整体上与分区中心距离的远近无明显相关性,平均 收敛时间约为4.2 min,用户站的最差平均收敛时间 达到8.6 min。

Fig. 4 Relation of three-dimensional coordinate error and mean convergence time and users' distances from zone center

3.4 播发频度与模型性能

北斗星基增强系统因星地接口资源的限制,目前播发的北斗分区综合改正数的更新时间间隔最高为36 s^[13],在播发资源受限的情况下,需要进一步分析BDS/GPS分区综合改正数的预报性能,评估其对BDS/GPS定位用户的影响。

对距分区中心1800 km 范围内9个用户站(见 表2)20 d的BDS/GPS 双频动态精密单点定位结果 进行统计,分区综合改正数的更新时间间隔设为30、 60、90、120、150、180 s。定位误差和平均收敛时间如 表4~6所示。各用户站定位精度均随预报时间的增加而降低,平均收敛时间均随预报时间的增加而增加;当预报时间小于3min时,各用户站平面定位精度(均方根值)均优于15cm,高程定位精度(均方根值)均优于28cm,平均收敛时间不超过15min。表7给出了不同更新时间间隔下,综合9个用户站的定位结果统计出的平均定位误差和平均收敛时间。从表7可以看出,预报时间每增加30s,平面定位精度和高程定位精度均下降0.4cm,平均收敛时间增加不超过2min。

	表4	BDS/GPS 双频动态精密单点	瓦定位平面误差
Tab. 4	Horizontal co	ordinate error of BDS/GPS	kinematic dual-frequency PP

田户补			不同更新时间间隔	下平面定位误差/cm		
用广站	30 s	60 s	90 s	120 s	150 s	180 s
HKWS	4.2	5.0	5.8	7.3	7.2	7.6
PARK	6.9	7.5	8.2	8.7	9.2	9.3
STR1	6.2	6.7	7.4	7.8	8.3	8.5
STR2	6.8	7.2	7.6	8.0	8.4	8.5
TID1	6.3	6.6	6.9	7.2	7.7	7.9
XMIS	6.9	7.4	7.6	7.7	7.9	8.1
CEDU	8.5	8.9	9.4	9.8	10.1	10.4
KOUC	10.8	11.3	11.7	12.1	13.0	13.4
ALIC	9.4	9.6	9.7	10.0	10.3	10.6

表5 BDS/GPS 双频动态精密单点定位高程误差 Tab.5 Vertical coordinate error of BDS/GPS

kinematic dual-frequency PPP

田白社	7	下同更新时	时间间隔-	下高程定伯	立误差/cn	n
用广理	30 s	60 s	90 s	120 s	$150 \mathrm{~s}$	$180 \mathrm{~s}$
HKWS	5.3	6.2	6.7	8.7	8.4	8.7
PARK	18.0	18.4	18.7	18.9	19.1	19.4
STR1	13.7	14.1	14.4	14.8	15.1	15.5
STR2	17.5	17.9	18.3	18.7	19.1	19.5
TID1	16.8	17.2	17.6	17.9	18.3	18.6
XMIS	14.6	14.9	15.2	15.5	15.6	15.8
CEDU	16.3	16.8	17.2	17.6	18.0	18.3
KOUC	23.9	24.1	24.4	24.5	24.9	25.2
ALIC	22.1	22.6	22.9	23.2	23.5	23.9

表6 BDS/GPS 双频动态精密单点定位平均收敛时间

Tab. 6 Average convergence time of BDS/GPS kinematic dual-frequency PPP

田中計	不同更新时间间隔下平均收敛时间/min						
用广理	30 s	60 s	90 s	120 s	$150 \mathrm{s}$	180 s	
HKWS	2.6	6.0	8.5	9.5	12.2	14.1	
PARK	3.3	4.6	5.8	7.2	8.5	10.5	
STR1	3.2	4.9	5.9	7.2	7.9	9.3	
STR2	3.4	4.6	5.9	6.9	7.4	9.6	
TID1	3.1	5.0	6.3	8.1	8.6	9.5	
XMIS	3.6	4.7	6.9	8.8	11.1	12.2	
CEDU	5.1	7.1	8.7	9.9	11.3	12.1	
KOUC	4.9	8.2	11.0	14.8	14.4	15.1	
ALIC	5.2	6.4	8.2	10.0	11.6	12.5	

表 7 BDS/GPS 双频动态精密单点定位平均误差与平均收敛 时间

 Tab.7
 Coordinate error and convergence time of BDS/GPS kinematic dual-frequency PPP

更新时间间隔 / s	平均平面 误差 / cm	平均高程 误差 / cm	平均收敛 时间 / s
30	7.3	16.5	3.8
60	7.8	16.9	5.7
90	8.3	17.3	7.4
120	8.7	17.8	9.1
150	9.1	18.0	10.3
180	9.4	18.3	11.6

4 结论

(1) 在1000 km范围内,基于BDS/GPS 分区综 合改正数的动态精密单点定位的收敛时间平均约3 min,收敛后的三维定位误差优于0.16 m。这两项 指标都优于BDS单系统的分区综合改正数定位。

(2)当服务范围超过1000 km时,因BDS共视 卫星数的减少,可用分区综合改正数个数减少,导致 BDS单系统用户实时动态定位的收敛时间成倍增 加,甚至无法收敛。BDS/GPS单点定位,仍能快速 收敛得到高精度的定位结果。整体而言,在1800 km服务范围内,随着用户站与分区中心距离的增加,多系统融合定位的精度呈现逐渐降低的趋势,但平均收敛时间不超过5 min,三维定位精度优于0.30 m。

(3)随着参数更新时间间隔的降低,预报时间 的增加,分区综合改正数的精度会受到一定影响,导 致BDS/GPS动态单点定位的精度与收敛速度均有 所下降。在3min预报时间内,每增加30s,整体定 位精度下降不到1cm,收敛时间增加不超过2min。

参考文献:

- 杨元喜,李金龙,王爱兵,等.北斗区域卫星导航系统基本导航 定位性能初步评估[J].中国科学:地球科学,2014,44(1):72. YANG Yuanxi, LI Jinlong, WANG Aibing, *et al.* Preliminary assessment of the navigation and positioning performance of Beidou Regional Navigation Satellite System [J]. Science China: Earth Sciences, 2014,44(1):72.
- [2] 佚名.北斗卫星导航系统简介[J].电波科学学报,2010,25 (5):1025.

Anonymous. A brief introduction of Beidou Satellite Navigation System [J]. Chinese Journal of Radio Science, 2010, 25(5): 1025.

- [3] 陈刘成,胡小工,封欣,等.区域导航系统实时广域差分修正模型与方法[J].中国科学院上海天文台年刊,2010(1):45.
 CHEN Liucheng, HU Xiaogong, FENG Xin, *et al.* The models and arithmetic for WADS real-time corrections of regional satellite navigation system [J]. Annals Shanghai Astronomical Observatory Chinese Academy of Sciences, 2010 (1):45.
- [4] CAO Yueling, HU Xiaogong, ZHOU Jianhua, et al. Kinematic wide area differential corrections for Beidou Regional System basing on two-way time synchronization[C] // SUN J, JIAO W, WU H, et al. Proceedings of China Satellite Navigation Conference (CSNC). Berlin: Springer, 2014: 277-288.
- [5] CAO Yueling, HU Xiaogong, WU Bin, et al. The wide-area difference system for the regional satellite navigation system of COMPASS [J]. Science China Physics: Mechanics and Astronomy, 2012, 55(7): 1307.
- [6] WU Xiaoli, ZHOU Jianhua, TANG Bo, et al. Evaluation of COMPASS ionospheric grid [J]. GPS Solutions, 2014, 18 (4): 639.
- [7] WU Xiaoli, HU Xiaogong, WANG Gang, *et al.* Evaluation of COMPASS ionospheric model in GNSS positioning [J]. Advances in Space Research, 2013, 51(6): 959.
- [8] 常志巧,胡小工,郭睿,等. CNMC与Hatch滤波方法比较及其 在北斗相对定位中的精度分析[J]. 中国科学:物理学力学天 文学,2015,45(7):079508.
 CHANG Zhiqiao, HU Xiaogong, GUO Rui, et al.

Comparison between CNMC and Hatch filter & its precision analysis for BDS precise relative positioning [J]. *Scientia Sinica: Physica, Mechanica* & *Astronomica*, 2015, 45(7): 079508.

- [9] 陈俊平,杨赛男,周建华,等.综合伪距相位观测值的北斗导航 系统广域差分模型[J].测绘学报,2017,46(5):537. CHEN Junping, YANG Sainan, ZHOU Jianhua, et al. A pseudo-range and phase combined SBAS differential correction model[J]. Acta Geodaetica et Cartographica Sinica, 2017,46 (5):537.
- [10] 陈俊平,胡一帆,张益泽,等.北斗星基增强系统性能提升初步 评估[J].同济大学学报:自然科学版,2017,45(7):1075.
 CHEN Junping, HU Yifan, ZHANG Yize, *et al.* Preliminary evaluation of performance of BeiDou satellite-based augmentation system[J]. Journal of Tongji University: Natural Science, 2017, 45(7):1075.
- [11] CHEN Junping, ZHANG Yize, YANG Sainan, et al. A new approach for satellite based GNSS augmentation system: from sub-meter to better than 0.2 meter era[C]//Proceedings of the ION 2015 Pacific PNT Meeting. Honolulu: [s. n.], 2015: 180-184.
- [12] 张益泽,陈俊平,杨赛男,等.北斗广域差分分区综合改正数定 位性能分析[J].武汉大学学报:信息科学版,2019,44 (2):159.

ZHANG Yize, CHEN Junping, YANG Sainan, *et al.* Analysis of PPP performance based on BDS comprehensive zone corrections [J]. Geomatics and Information Science of Wuhan University, 2019, 44(2): 159.

[13] 陈俊平,张益泽,周建华,等.分区综合改正:服务于北斗分米
 级星基增强系统的差分改正模型[J].测绘学报,2018,47
 (9):1161.

CHEN Junping, ZHANG Yize, ZHOU Jianhua, *et al.* Zone correction: a SBAS differential correction model for BDS decimeter-level positioning [J]. *Acta Geodaetica et Cartographica Sinica*, 2018, 47(9): 1161.

- [14] ZHANG Yize, CHEN Junping, YANG Sainan, et al. Initial assessment of BDS zone correction [C]//Proceedings of China Satellite Navigation Conference (CSNC). Berlin: Springer, 2017: 271-281.
- [15] 任晓东,张柯柯,李星星,等.BeiDou、Galileo、GLONASS、GPS多系统融合精密单点[J]. 测绘学报,2015,44(12):1308.
 REN Xiaodong, ZHANG Keke, LI Xingxing, et al. Precise point positioning with multi-constellation satellite systems: BeiDou, Galileo, GLONASS, GPS[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(12):1308.
- [16] 张小红,左翔,李盼,等. BDS/GPS精密单点定位收敛时间与定位精度的比较[J]. 测绘学报,2015,44(3): 250.
 ZHANG Xiaohong, ZUO Xiang, LI Pan, *et al.* Convergence time and positioning accuracy comparison between BDS and GPS precise point positioning [J]. Acta Geodaetica et Cartographica Sinica, 2015,44(3): 250.
- [17] BLEWITT G. An auto editing algorithm for GPS data [J]. Geophysical Research Letters, 1990, 17(3): 199.
- [18] 张小红,曹琪,何俊,等. 构建阈值模型改善TurboEdit 实时周 跳探测[J]. 武汉大学学报:信息科学版,2017,42(3):285. ZHANG Xiaohong, CAO Qi, HE Jun, *et al.* Improving TurboEdit real-time cycle slip detection by the construction of threshold model [J]. Geomatics and Information Science of Wuhan University, 2017, 42(3):285.
- [19] PETIT G, LUZUM B. IERS technical 2010 note 36 [M]. Frankfurt am Main: Verlag des Bundesamts für Kartographie und Geodäsie, 2010.

(上接第417页)

concentrations, temporal trends and determinants of persistent organic pollutants in breast milk of New Zealand women [J]. Science of the Total Environment, 2013, 458/459/460: 399.

- [120] MÜLLER M H B, POLDER A, BRYNILDSRUD O B, et al. Brominated flame retardants (BFRs) in breast milk and associated health risks to nursing infants in Northern Tanzania [J]. Environment International, 2016, 89/90: 38.
- [121] PRATT I, ANDERSON W, CROWLEY D, et al. Brominated and fluorinated organic pollutants in the breast milk of first-time Irish mothers: is there a relationship to levels in food?[J]. Food Additives & Contaminants: Part A, 2013, 30 (10): 1788.
- [122] LIANG S, XU F, TANG W B, et al. Brominated flame retardants in the hair and serum samples from an e-waste recycling area in southeastern China: the possibility of using hair for biomonitoring[J]. Environmental Science and Pollution Research, 2016, 23(15): 14889.

- [123] ALI N, EQANI S A M A S, MALIK R N, et al. Organohalogenated contaminants (OHCs) in human serum of mothers and children from Pakistan with urban and rural residential settings [J]. Science of the Total Environment, 2013, 461/462: 655.
- [124] PRAGST F, BALIKOVA M A. State of the art in hair analysis for detection of drug and alcohol abuse [J]. *Clinica Chimica Acta*, 2006, 370(1/2): 17.
- [125] QIAO L, ZHENG X B, YAN X, et al. Brominated flame retardants (BFRs) and Dechlorane Plus (DP) in paired human serum and segmented hair [J]. Ecotoxicology and Environmental Safety, 2018, 147: 803.
- [126] ZHENG J, LUO X J, YUAN J G, et al. Levels and sources of brominated flame retardants in human hair from urban, ewaste, and rural areas in South China [J]. Environment Pollution, 2011, 159(12): 3706.