文章编号: 0253-374X(2020)08-1188-11

基于预测机制的装配作业重调度问题建模优化

陆志强,方 佳

(同济大学机械与能源工程学院,上海 201804)

摘要: 飞机移动装配中因作业质量问题增加的修复作业会 打乱装配计划并造成经济损失,为解决该问题提出了一种预 测一重调度形式的闭环框架,该框架的前端利用质量相关部 件衰退以及作业质量特性偏差的历史数据训练了作业质量 预测模型,基于预测结果,重点针对后端建立了装配作业重 调度模型并设计了改进型免疫算法(I-I-A)用于生成新的装 配计划。数值实验部分从不同角度验证了I-I-A的有效性,同 时也对所提闭环框架的性能优劣进行了对比分析。

关键词: 质量预测;改进型免疫算法;飞机移动装配;支持向 量回归;作业调度

中图分类号: TP29 文献标志码: A

Modeling and Optimization of Job Assembly Rescheduling Problem Based on Job Quality Prediction Mechanism

LU Zhiqiang, FANG Jia

(School of Mechanical Engineering, Tongji University, Shanghai 201804, China)

Abstract: Repair jobs resulting from poor assembly quality of jobs in the aircraft assembly process can disturb assembly scheduling plans and cause economic losses. This paper proposes a prediction-rescheduling closed-loop framework in order to solve this scheduling problem. In the front part of this framework, job quality prediction models are trained using historical data of quality-related components in deteriorations and quality characteristic deviations of jobs. Based on the prediction results of jobs, a rescheduling model is established in the later part of this framework and an improved-immune-algorithm (I-I-A) is designed to generate a new scheduling plan for the assembly line. The effectiveness of the I-I-A is verified from different aspects and the advantages and disadvantages of the performance of the closed-loop framework suggested in this paper is analyzed in

comparison with other frameworks.

Key words: quality prediction; improved-immunealgorithm(I-I-A); aircraft moving assembly; support-vectorregression; job scheduling

在实际飞机移动装配线中,装配作业在装配调 度计划的指导下依次执行。飞机移动装配线调度问 题可抽象成资源受限项目调度问题(resourceconstrained project scheduling problem),近几年的相 关研究大多围绕不确定环境展开, Panda 等^[1]和Liu 等^[2]均以制造业为背景研究作业时长变动、物料送 达不准时等不确定因素影响下的调度问题。对于飞 机移动装配这种单件大型复杂产品的装配项目而 言,因装配质量不合规格增加的修复操作就是不可 忽视的不确定因素之一,它既可能导致后续作业延 迟开始也可能造成装配人员安排、资源配送和使用 计划发生伴随性变动,装配计划执行过程不稳定性 增加的同时企业也将产生额外的计划调整成本。本 文从高效性和经济性出发,研究飞机移动装配线中 作业因为质量原因被增加修复操作这一环境下的重 调度问题。

随着飞机移动装配线越来越多地采用智能设备 辅助装配,设备性能衰退逐渐成为影响作业装配质 量进而干扰装配计划的要因。Kang等^[3]和Liu等^[4] 都研究制造系统中机器设备"硬故障"(设备彻底不 可运行)中断作业这一环境下的调度问题,相比设备 "硬故障",飞机移动装配线中发生设备"软故障"的 频繁更高。与Shahkarami等^[5]分析的光纤网络软故 障(soft-failure)类似,复杂装配系统中机器设备发生 "软故障"时虽能运行,但却会导致装配质量问题频 繁出现并演变为频繁的作业修复。本文将机器设备 中工装夹具、刀具、夹具与刀具构成的部件定义为质

第一作者:陆志强(1968—),男,教授,博士生导师,工学博士,主要研究方向为生产工程、物流系统建模与优化. E-mail:zhiqianglu@tongji.edu.cn

收稿日期: 2019-10-09

基金项目:国家自然科学基金(61473211,71171130)

量相关部件,它们的磨损与退化是促使设备发生"软 故障"的主要因素。本文通过收集设备质量相关部 件的衰退以及作业质量特性偏差历史数据构建前端 的作业质量预测模型。

现有解决不确定环境下调度问题的方法可以分 为前摄调度法和反应调度法。多数研究前摄调度方 法的文献通过数学公式推导出可插入调度计划中的 缓冲时间值或资源投入量来应对干扰。前摄型调度 研究成果中,Cui等^[6]针对流水车间故障不确定环境 下的生产调度与维护计划联合优化问题,提出了双 层循环算法。Tan等^[7]将紧急救援问题抽象成了资 源受限项目调度问题并设计了一种混合型遗传-禁 忌算法。Bruni等^[8]研究了作业执行时间不确定的 资源受限项目调度问题并提出了自适应的鲁棒优化 模型对资源分配作出决策。在反应调度方法的研究 中,Qiao等[9]针对半导体制造中的突发事件提出了 包含一个规则和一个调度程序的局部快速修复型重 调度算法。Creemers等^[10]研究作业执行时间随机变 动的反应型调度问题并采用马尔科夫链进行动态优 化决策。Rahmani等^[11]针对动态柔性车间中未预期 的新工件到达造成干扰的问题,设定双优化目标并 提出了一种变邻域算法生成较稳定的重调度方案。

如今智能制造正通过促进信息通信技术与制造 过程的整合来重塑制造业,数据驱动式的决策方式 对制造业的未来具有重要意义。本文基于这种思想 提出了指导现场实际作业装配的闭环框架,该框架 的前端利用预测模型对作业质量进行预测,后端基 于预测结果构建重调度模型并运用本文提出的改进 型免疫算法调整作业装配计划。

1 问题描述以及数学模型

1.1 问题描述

以飞机移动装配线为背景提出的预测-重调度 闭环框架的相关假设与说明如下,其中后端作业重 调度模型的内容在1.2节详细描述。

(1) 飞机移动装配线当前工位的装配作业集合 记作 $J = \{1, 2, 3, ..., j, ..., N\}$,其中1和N是虚拟作 业;作业 $j \in J$ 有确定的装配时长 t_{dj} 和对第 $k \in K$ 种资 源的需求量 r_{jk} ,K为资源集合;任意作业j受到时序 约束必须在其全部紧前作业完成后才能开始;此外, 受有限资源量的约束,任意时刻任意种类的资源总 需求量不能超过该类资源的供应量 R_{ko}

(2) 装配作业所需机器设备中共包含 p 类质量

相关部件,类型集合记作 $Q = \{1, 2, 3, ...\rho\}$ 。作业j所需第 $q \in Q$ 类质量相关部件的衰退情况用夹具长 度衰退量 l_{jq} 、夹具直径衰退量 c_{jq} 、夹具张紧力衰退量 s_{jq} 和刀具磨损量 g_{jq} 构成的向量 $D_{jq} = (l_{jq}, c_{jq}, s_{jq}, g_{jq})^{T}$ 表示, D_{j} 是维度为 $4O_{j}$ 的单列向量,其中 O_{j} 为作业j所需质量相关部件类型总数。Wang等^[12]针对衰退 型生产系统研究生产与维护联合优化问题时采用 gamma 过程来描述生产系统退化;Lu等^[13]研究串并 行多阶段制造系统机会维护问题时,考虑到设备中 质量相关部件(QRCs)衰退过程具有随机独立、非负 增量的性质故采用 gamma 过程对 QRCs 衰退进行建 模,同理本文假设作业所需设备中质量相关部件的 衰退过程服从 gamma 过程。任意作业j的初始衰退 向量记作 $D_{oq} = (l_{ojq}, c_{ojq}, s_{ojq}, g_{ojq})^{T}, D_{ojq}$ 中每个维度 都服从正态分布。

(3)为保证飞机装配的质量,作业*j*完成后必须 接受*n*个质量特性偏差检测,检测时间忽略不计,结 果 记 作 $X_j = (b_{x_1}, b_{y_1}, b_{z_1}, b_{x_2}, b_{y_2}, b_{z_2}...b_{x_n}, b_{y_n}, b_{z_n})^{T}$, $b_{x_i}, b_{y_i} \pi b_{z_i} (i \in [1, n]) 是作业$ *j*的第*i*个质量特性偏 $差值在<math>x, y \pi z^3$ 个方向上的分量。若 X_j 各维度均落 在标准规格范围内可继续执行后续作业;否则需对 作业*j*添加属性为 $t_{d_i} = \partial t_{d_i} \pi r_{j,k} = \partial r_{jk}$ 的修复作业 *j*_x,*j*_x未完成时作业*j*所有紧后作业都无法执行。

假设 X_i 的各维度 $b_i \in X_j$, i = [1, 3n]都服从正态 分布且装配过程对各维度正态分布的影响可明显体 现在均值上,忽略各维度方差 σ_i 的细微波动,作业最 多进行一次修复便可质量达标。装配现场的数据采 集系统每隔一定周期进行一次质量相关部件衰退数 据以及质量特性偏差数据的更新与存储。

(4)作业j的装配质量有3个主要影响因素:该 作业所需设备中质量相关部件衰退情况、关键紧前 作业j_b的质量特性偏差和j装配中的噪声量。假设 任意作业j有且仅有一个关键紧前作业j_b对X_j有关 键影响。当前工位内的全部关键紧前作业构成激发 预测机制的作业列表J_b,时间驱动方式下只要有 j_b∈J_b完成且质检合格将直接触发后续作业质量特 性偏差的预测机制,预测机制运行时间忽略不计;质 检不通过则直接采用右移策略插入修复作业计划形 成新的调度计划指导装配,此部分不是本文重点故 不再赘述。

(5)假设装配现场已提供经优化的预防性维护 阈值δ=50%,作业质量合格概率预测值相比标准值 下降超过δ时将根据更换零衰退部件的成本与质量 合格概率改善程度之比确定性价比最高的维护方 式,维护时长为t_m,维护结束后相应作业才能开始 装配。

(6)离散化时间集合记为*T*={0,1,2,3...*T*}, 装配项目启动前由遗传算法优化得到初始调度计划 *F*_o,基于*F*_o经调整形成的新调度计划*F*_n又可视作下 一次计划调整的初始调度计划。

1.2 后端作业重调度符号与数学模型

(1)时间相关符号。T:离散化时刻集合; t_m :预 防性维护持续时长; t_p :预测机制触发时刻即重调度 时刻, $t_p \in T$ 。

(2)资源相关符合。*K*:有限资源集合;*R_k*:第*k* 类资源的供应量。

(3)作业相关符号。*J*:工位内装配作业集合;*j*:*J* 中的任意作业;*j*_i:*j*对应的修复作业;*t*_{dj}:作业*j*的执 行时长;*r*_{jk}:作业*j*对第*k*类资源的需求量;*w*_j:作业*j* 实际开始时间偏离初始计划开始时间每单位时间所 付成本即作业的权重;*W*_j:作业*j*所有紧后作业单位 时间偏差成本累积和。

(4)调度计划相关符号。F_o(F_n):初始(新)调度
 计划方案;t_{osj}(t_{nsj}):作业j在初始(新)调度计划中的
 开始时刻。

(5)重调度相关符号。*J*_{stp}:*t*_p时刻已开始作业列 表;*J*_{ntp}:*t*_p时刻未开始作业列表;*J*_{mtp}:*t*_p时刻接受质量 相关部件维护的作业列表;*J*_{ptp}:*t*_p时刻确定要进行预 调度的修复作业列表;*J*_{tp}:*t*_p时刻*J*_{ntp}中未进行修复预 调度的作业列表;*J*_{tp}:*t*_p时刻确定的重调度作业列表; *J*_{Aj}(*J*_{Bj}):预调度作业确定后,作业*j*更新后的全部紧 后(紧前)作业集合。

(6)决策变量符号。*x_{jt}*: 0-1变量,作业*j*在*t*时刻 开始取1,否则取0。

(7)数学模型为

$$\max Z = Z_1 - Z_2 \tag{1}$$

$$Z_1 = \sum_{j \in J_{it_n}} W_j \bullet t_{fj} \tag{2}$$

$$Z_2 = \sum_{j \in J} w_j \cdot \left(t_{\text{nsj}} - t_{\text{osj}} \right) \tag{3}$$

$$W_{j} = \sum_{i \in I_{*}} w_{j_{s}}, \forall j \in J_{i_{t_{s}}}$$

$$\tag{4}$$

$$t_{\rm fj} = \min(t_{\rm cj}, t_{\rm dj}), \forall j \in J_{\rm ft_p}$$
(5)

$$F_{n} = \beta(F_{o}), \forall j \in J_{t_{p}}$$
(6)

$$x_{jt} = \{0, 1\}, \forall j \in J_{t_p}, \forall t \in T$$

$$(7)$$

$$\sum_{t\in T} x_{jt} = 1, \forall j \in J_{t_p}$$
(8)

$$t_{\rm nsj} = \sum_{t \in T} t \cdot x_{jt}, \forall j \in J_{t_{\rm p}}, \forall t \in T$$
(9)

$$t_{\rm nsj} = t_{\rm osj}, \forall j \in J_{\rm st_p} \tag{10}$$

$$t_{\rm nsj} \geqslant t_{\rm osj}, \forall j \in J_{t_{\rm p}}$$
 (11)

$$t_{\text{nsj}} \ge t_{\text{nsi}} + t_{\text{di}}, \forall j \in J_{t_p}, \forall i \in J_{\text{Bj}}$$
 (12)

$$t_{\rm nsj_r} \geqslant t_{\rm nsj} + t_{\rm dj}, \forall j \in J \tag{13}$$

$$t_{\rm nsj} \ge t_{\rm p} + t_{\rm m}, \forall j \in J_{\rm mt_p}$$
 (14)

$$\sum_{j\in J_{t_p}} r_{jk} \cdot \sum_{\tau=t-t_{dj}+1}^{t} x_{j\tau} \leqslant R_k, \forall t \in T, \forall k \in K$$
(15)

式(1)是优化目标。式(5)t_{cj}是重调度列表中未 进行修复预调度的作业在新调度计划中的松弛时 间,t_{cj}等于作业j结束时刻到最早紧后开始时刻这段 时区中满足资源约束的最大连续时段数,贡献时段 t_i取t_{cj}和t_{dy}间的较小值,其含义是一旦j产生了预期 外的修复需求且装配现场实施右移策略时作业j所 有紧后作业都能少推迟的时间值;式(4)W_j是作业j 所有紧后作业单位偏差时间需付成本之和;基于式 (4)、(5)的式(2)衡量新调度计划中未进行修复预调 度的作业应对质量修复干扰时能节约的成本可视为 作出的贡献,而式(3)衡量新调度计划相比初始调度 计划因作业延迟开始给企业造成的成本支出,因此 由式(2)与式(3)的差值构成的优化目标函数(1)的 含义是最大化新调度计划对企业的总贡献值。

式(6)-(11)给出了新调度计划(F_n)与初始调度 计划(F_o)间的映射与约束关系: F_n 是在 F_o 基础上运 用预测和算法得到, $(IF_n)=F_o$ 的对应关系不存在显 性表达故直接记作式(6)的 β ;式(7)-(9)给出了 F_n 中作业开始时间与决策变量的关系式, 同时约束了 任意作业只能有一个开始时刻;式(10),(11)则进一 步约束了重调度时刻已开始作业的开始时间应与 F_o 保持一致, 重调度作业在 F_n 中的开始时间不得 早于 F_{oo}

最后,式(12)-(15)从时序及资源方面给出了约 束:式(12)-(14)从装配工艺时序、装配与修复时序 及维护与装配时序角度约束了作业的开始时间;式 (15)表示任意时刻作业的资源需求总量不能超过资 源的总供应量。

2 整体框架与算法设计

图1是本文构建的实际应用闭环框架。前端离 线训练部分主要完成数据的提取、处理和作业质量 特性偏差预测模型的训练;后端在线预测部分则主 要根据装配线实际数据进行预测并基于预测结果实 现装配计划重调度。2.1节、2.3节和2.2节分别对前端模型训练、后端重调度算法以及两者的过渡部

分进行了阐述,研究重点仍集中在后端重调度算法 的有效性和整体框架的可行性分析上。

图 1 实际应用前后端整体框架 Fig.1 Front-end overall framework of actual application

2.1 前端支持向量回归(SVR)模型训练

2.1.1 生成训练样本

采用文献[14]基于质量偏差流理论的状态空间 模型即公式(16)模拟各作业质量特性偏差的历史 数据:

$$\begin{cases} X_1 = H_1 D_1 + Y_1 & j = 1 \\ X_j = M_{j_b} X_{j_b} + H_j D_j + Y_j & j > 1 \end{cases}$$
(16)

其中, M_{j_b} 是j的关键紧前作 ψ_{j_b} 与作 ψ_{j} 间的质量特 性偏差传递矩阵, H_j 是质量相关部件衰退对作 ψ_{j} 质 量特性偏差影响的传递矩阵, Y_j 是噪声矩阵。 M_{j_b} 、 H_j 和 Y_j 采用文献[14]中的数据。考虑到实际装配 现场质量相关部件衰退及作业质量特性偏差在短时 间内变化较小故构建训练样本时以数据采集系统数 据更新周期为取样周期,作 ψ_{j} 的训练样本如(17)矩 阵 S_i 所示, $S_i \in \mathbb{R}^{s_1 \times s_2}$,其中 s_2 是样本总数。

$$S_{j} = \begin{pmatrix} I_{j} \\ E_{j} \end{pmatrix}, I_{j} = \begin{pmatrix} X_{mj_{b}} \\ D_{mj} \end{pmatrix}, E_{j} = X_{mj}$$
(17)

 S_i 中每个样本的输入矢量 $I_i \in \mathbb{R}^{(3n+4O_j) \times 1}$ 由各取

样周期内 j_b 的质量特性偏差均值 X_{mj_b} 以及作 w_j 所需 设备的质量相关部件衰退均值 D_{mj} 构成,输出矢量 $E_j \in \mathbb{R}^{3n \times 1}$ 等于作 w_j 在周期内的质量特性偏差 均值 X_{mj_o}

2.1.2 训练支持向量回归模型

对作业质量特性偏差的每一维都建立支持向量 回归(SVR)模型,SVR可通过映射函数将非线性问 题成功转换为式(18)中高维特征空间的线性回归模 型,利用结构风险最小化原则和对偶问题最终可将 预测值优化问题表示为(19)^[15]:

$$f(\mathbf{I}_{j}) = \boldsymbol{\gamma}^{\mathrm{T}} \boldsymbol{\cdot} \boldsymbol{\varphi}(\mathbf{I}_{j}) + \boldsymbol{\mu}$$
(18)

$$f(\mathbf{I}_{j}) = \sum_{l=1}^{s_{2}} (\alpha_{l} - \alpha_{l}) \eta(\mathbf{I}_{lj}, \mathbf{I}_{j}) + \mu \qquad (19)$$

其中
$$\eta(I_{ij}, I_j) = \exp\left(-\frac{\|I_{ij} - I_j\|^2}{\psi^2}\right)$$
是径向基核函

数, ψ 是自由参数,式(19)经优化算法求得 α_l 和 α_l 后可进一步求出式(18)中的参数 γ 和 μ ,从而完成模型的训练过程。

2.2 作业质量预测机制的激发与结果输出

基于2.1节训练的质量特性偏差预测模型,时间 驱动下质量预测机制的激发与结果输出流程如下:

步骤1:作业*j*_b∈*J*_b按计划在*t*_p时刻装配完成并 接受质检得到质量特性偏差*X*_{jb},考虑到一个数据采 集周期内数据都十分接近,故可近似将该值视为当 前数据采集周期内的均值*X*_{mj_b}。

步骤2:确定 j_b 的关键紧后作业列表 J_h 。遍历 J_h , 检测 $j_h \in J_h$ 所需设备中质量相关部件的衰退量并基 于历史衰退过程预估 j_h 完成时的衰退均值 D_{mj_h} ,将 X_{mj_b} 和 D_{mj_h} 构成矢量 I_{j_h} 输入作业 j_h 的预测模型并最 终输出 j_h 的质量特性偏差均值预测值 X_{mj_h} 。由 X_{mj_h} 以及质量特性偏差的上下规格矢量 X_{uj_h} 和 X_{dj_h} 通过 式(20)可算出 j_h 的合格概率预测值 P_{Ej_h} ,若达到预防 性维护阈值则将 j_h 纳入 J_{mj_h} 。

$$P_{\rm E_{j_h}} = \prod_{i=1}^{3^*n} \left(\int_{b_{di}}^{b_{ui}} \frac{1}{\sqrt{2\pi} \sigma_{ji}} \cdot e^{-(x-b_{mi})^2/2\sigma_{ji}^2} dx \right)$$
(20)

步骤3:*t*_p时刻未开始作业列表*J*_{mp}中未被预测的 作业质量合格概率默认为历史概率,被预测的作业 质量合格概率若是*J*_{mp}中的瓶颈,其修复作业将被纳 入预调度列表*J*_m,*J*_p,*y*_p中作业不可多于*N*_u。

步骤4:重调度作业列表*J*_{t_p}由*J*_{nt_p}和*J*_{pt_p}构成,进 一步调用2.3节算法生成装配作业重调度计划。

2.3 改进型免疫算法

免疫算法是一种模仿生物体免疫学机理的较为 成熟的启发式算法,本文所提改进型免疫算法(I-I-A)重点在种群初始化、交叉变异和种群更新方面进 行了改进。

2.3.1 初始种群的生成

为在增加抗体多样性的同时降低转变为完全随机 搜索的风险,初始种群L中P条抗体由2种不同的生成 方式 $\xi_1(\cdot)$ 和 $\xi_2(\cdot)$ 按照比例 a_1 和 a_2 构成,记作式(21):

$$L = \xi_1(a_1P) + \xi_2(a_2P)$$
(21)

图2给出了局部作业网络结构和运用2种方式 生成的抗体编码示例。第1行示意第1种方式,在不 违背紧前紧后关系约束的前提下随机生成可行调度 编码即抗体;第2行示意第2种方式,编码在不违背 作业时序约束的同时被划分为具有一定性质的不同 模块,示例被划分的[1]、[34]、[8257]和[9]这4 个模块相互之间位置不可换,但任意一个模块内部 的作业相互之间不存在紧前紧后关系,因此可随机 交换位置。

Fig.2 Example of antibody generation methods

当有修复作业被预调度时只需增加修复作业与 原作业间的约束关系并更新整体作业网络结构的时 序约束关系就可按上述方式生成初始种群。

2.3.2 交叉与变异操作

免疫算法中交叉和变异操作对算法整体性能至 关重要。交叉和变异概率越大则抗体被更新的机会 越多,这有助于提高种群的多样性但太大的交叉和 变异概率也可能使优良基因丢失^[16]。在参考文献 [17]中交叉变异算子的基础上设计了如下自适应交 叉(p_c)和变异(p_m)算子:

$$A = \sum_{j \in J_{i_p}} W_j \bullet t_{ij} - \sum_{j \in J} w_j \bullet \left(t_{nsj} - t_{osj} \right) \quad (22)$$

$$p_{c} = \begin{cases} \frac{\lambda_{1}(A_{v} - A_{g})}{A_{g} - A_{s}} & A_{g} \leq A_{v} \\ \lambda_{2} & A_{g} > A_{v} \end{cases}$$
(23)

$$p_{\rm m} = \begin{cases} \frac{\lambda_3 (A_{\rm m} - A_{\rm c})}{A_{\rm m} - A_{\rm v}} & A_{\rm c} \ge A_{\rm v} \\ \lambda_4 & A_{\rm c} < A_{\rm v} \end{cases}$$
(24)

式(22)是方案贡献值也是抗体亲和度评价指标,式(23)、(24)中 A_{g} 和 A_{s} 对应2条交叉抗体中较大和较小的亲和度值, A_{m} 和 A_{v} 分别是当前群体的最大与平均亲和度值, A_{c} 是当前抗体的亲和度值。抗体可根据自身亲和度在群体中的表现动态调节交叉或变异概率:亲和度高于群体平均水平的抗体,亲和度越高 p_{m} 越小,亲和度低于群体平均水平的抗体,亲和度越低 p_{c} 越大。这种方式可保留较优抗体并有针对性地促使较差抗体进行邻域搜索。此外,本文针对第2种方式生成的抗体设置了简单快速的变异规则:① w_{j} 越大的作业调度优先级越高。③全部紧后作业总数越大的作业调度优先级越高。④随机交换模块中的作业顺序。①-④可针对编码的一个或多个模块实施从而灵活控制变异程度。抗体交叉变异流程如下:

步骤1:按抗体生成方式不同,划分原抗体群为 群1和群2,交叉抗体*d*₁、*d*₂需同时源于群1或群2。

步骤2:计算 p_c 并生成随机数 r_1 ,若 $r_1 \leq p_c$ 则转步骤3进行交叉,否则不交叉。

步骤3:若 d_1 、 d_2 都来自群2则随机选择2个相邻 模块,重新生成2个模块的作业顺序后分别得到子 抗体 d_{1s} 和 d_{2s} ;若 d_1 、 d_2 都来自群1则随机产生满足 $h_2 > h_1$ 的2个位置 h_1 和 h_2 , d_1 中位置介于 h_1 与 h_2 间 的作业按照 d_2 中这些作业的对应顺序排列,其他作 业位置不变得到子抗体 d_{1s} ,同理形成 d_{2s} 并最终根据 亲和度大小更新 d_1 、 d_2 。

步骤4:对交叉后的抗体群实现自适应变异,群 1抗体进行单点挪位变异,群2抗体则按前文所给变 异规则进行模块内的变异。

2.3.3 种群更新与末尾淘汰机制

本文设置的知识记忆库中最佳亲和度值若连续 U代未变将按照种群初始化方式重构下一代种群, 否则先按亲和度降序排列交叉变异后的群体,再对 末尾抗体实施克隆、变异,选出亲和度最大的抗体淘 汰当前末尾抗体,亲和度相同则根据抗体编码和解 码后作业的松弛时间选择相似度小的。

3 数值实验及分析

3.1 实验平台与实例参数

Lambrechts 等^[18]提取服从三角分布的离散数据 为作业设定不稳定性成本权重,本文以相同方式使非 虚拟作业权重服从参数为(0.01,0.06,0.10)的三角 分布,结尾虚作业的权重从参数为(0.10,0.15,0.18) 的三角分布中抽样1000次取平均。每个作业仅有2 类质量相关部件,初始衰退量 l_{oig} 、 c_{oig} 、 s_{oig} 和 g_{oig} 分别服 从区间[0,1]、[0,1]、[0,3]和[0,10]内的均匀分布。 质量相关部件的衰退服从 gamma 过程,其中形状参 数和尺寸参数分别服从区间[0.001 35,0.001 56]和 [0.018 70,0.033 60]内的均匀分布。调度算法中抗 体规模为 50, 迭代 20 次, p_c 与 p_m 算子中 $\lambda_1 = 0.8$, $\lambda_2 = 0.4, \lambda_3 = 0.6, \lambda_4 = 0.8$ 。本文实验利用差值百分 比G来衡量I-I-A相对其他B算法所得目标函数的改 善程度。本文优化目标可能出现负数,按式(25)计算 G,可直接通过G值分析出I-I-A相对不同算法的改 善程度大小。G值为正数时表示 I-I-A 所得结果更 优,G值越大表示I-I-A优化程度越明显。

$$G = \begin{cases} \frac{Z_{I-I-A} - Z_{B}}{\left|\min(Z_{I-I-A}, Z_{B})\right|} \times 100\% & Z_{I-I-A} \cdot Z_{B} > 0\\ \frac{\max(|Z_{I-I-A}|, |Z_{B}|)}{Z_{I-I-A} - Z_{B}} \times 100\% & Z_{I-I-A} \cdot Z_{B} \leqslant 0 \end{cases}$$
(25)

3.2 重调度算法性能对比

3.2.1节选择了工程实践中常用的基于作业优 先顺序的规则^[19]AWA1和右移策略(RS)2种对比算 法:①AWA1将作业按照在F。中开始时间的先后顺 序排列,所有修复作业安排至正常作业的后一位形 成AWA1编码。②RS将修复作业安排在对应正常 作业结束时刻开始执行,其他作业顺延到各自的紧 前作业全部完成后开始执行^[20]。考虑到I-I-A是启 发式算法而AWA1与RS并非启发式算法,因此 3.2.1进一步选取同样是启发式算法的遗传算法与 I-I-A进行对比,验证I-I-A的有效性。需说明的是, 3.2.1节单次预测下的每组对比实验仅对比单次预 测-重调度后的装配计划的贡献值;而3.2.2节则模 拟了装配现场时间驱动下按顺序进行的多次预测-重调度过程并对最终形成的总装配计划的贡献值进 行后验对比。

3.2.1 单次预测下算法性能对比

实验在5种作业规模下进行,各规模下均取5个 算例共进行5组实验,这5个算例分别有且仅有1个 关键作业。每个算例下的一组实验需对关键作业激 发预测机制并实现重调度的过程进行20次模拟,在 保持预测部分一致的情况下对比运用I-I-A、AWA1 和RS这3种重调度算法得到的调度计划在目标函 数值上的表现。表1每组数据是该组20次模拟所得 结果里与目标函数中位值所在次对应的数据信息。 用 G_1 和 G_2 分别表示I-I-A与AWA1、RS的目标函数 优化结果之间的差值百分比。表1中G1和G2列大部 分为正数说明 I-I-A 结果基本都优于 AWA1 和RS, 多数G2均值比G1均值大10%左右反映出I-I-A优于 RS的程度大于AWA1。仅从目标函数优化结果可 见I-I-A相比AWA1和RS有显著的改善效果,但I-I-A的运算时间远远大于AWA1和RS,主要因为本文 的I-I-A需迭代寻优而AWA1和RS并不存在迭代搜 索过程。

考虑到本文I-I-A属于启发式算法,遗传算法 (GA)作为经典启发式算法其解决调度问题的适用 性和有效性已被大量文献研究验证,为进一步验证 I-I-A的算法性能,将其与GA进行对比。GA在种群 规模和迭代总数上与I-I-A保持一致,但交叉和变异 采用固定概率0.8和0.7,初始种群仅采用一种随机 生成方式。该对比实验中各算例都确定了10个激 发预测机制的关键作业,每个算例进行3次实验,每 次实验这10个关键作业在保持前端一致而后端分 别采用I-I-A和GA可得到10个调度结果和对应的

Tab.1 Comparison of results of 1-1-A, AWA1, and K5 in single prediction														
皙		I-I	I-A				AWA1					RS		
升	7	7	7	时	7	7	7	时	0 /0/	7	7	7	时	0 /0/
例	Z_1	Z_1 Z_2	Z	间/s	Z_1	Z_2	Z	间/s	G_1 / γ_0	Z_1	Z_2	Z	间/s	G_2/γ_0
	6.84	7.64	-0.8	7.62	3.19	11.99	-8.8	0.12	90.90	3.19	11.99	-8.8	0.05	90.90
20	6.73	4.19	2.54	6.69	2.29	8.37	-6.08	0.03	70.53	2.29	3.45	-1.16	0.02	68.64
20	2.45	1.48	0.97	6.14	3.46	5.00	-1.54	0.02	61.72	5.47	6.10	-0.63	0.01	60.62
JOD	1.30	0	1.30	7.10	1.78	2.80	-1.02	0.01	56.03	1.78	2.80	-1.02	0.02	56.03
	2.27	1.87	0.40	7.34	1.63	3.52	-1.89	0.02	82.53	1.30	1.40	-0.10	0.02	80.00
平均				6.98				0.04	72.34				0.02	71.24
	17.58	20.34	-2.76	28.22	12.60	28.06	-15.46	0.02	82.15	15.58	35.32	-19.74	0.03	86.02
30	20.14	6.26	13.88	20.80	13.66	3.24	10.42	0.02	33.20	16.61	5.40	11.21	0.02	23.81
	15.24	14.39	0.85	25.94	9.57	19.48	-9.91	0.01	92.10	10.47	25.24	-14.77	0.01	89.42
JOD	13.72	5.77	7.95	18.52	13.19	7.50	5.69	0.01	39.72	10.11	5.72	4.39	0.01	81.09
	8.18	2.90	5.28	19.97	9.14	4.62	4.52	0.01	16.81	9.14	5.32	3.82	0.01	38.22
平均				22.69				0.01	52.80				0.02	63.71
	56.83	14.07	42.76	74.08	41.30	19.39	21.91	0.07	95.16	41.30	25.26	16.04	0.10	166.58
60	65.32	15.82	49.5	73.95	42.38	13.03	29.35	0.06	68.65	40.62	0	40.62	0.06	21.86
. 1	38.52	24.49	14.03	42.44	33.99	18.19	15.8	0.02	-12.62	44.72	37.47	7.25	0.03	93.52
JOD	42.29	16.57	25.72	52.86	43.07	32.89	10.18	0.04	152.65	41.37	23.91	17.46	0.05	47.31
	32.22	1.76	30.46	49.17	30.64	4.70	25.94	0.03	17.42	33.36	18.84	14.52	0.03	109.78
平均				58.50				0.04	64.26				0.05	87.81
	75.25	4.96	70.29	134.27	58.41	11.98	46.43	0.10	51.39	60.55	18.60	41.95	0.10	67.56
90	52.97	0.35	52.62	75.98	52.97	0.35	52.62	0.06	0	55.07	2.80	52.27	0.13	0.67
. 1	55.34	12.33	43.01	67.91	43.62	7.89	35.73	0.05	20.38	55.27	20.55	34.72	0.10	23.88
JOD	34.19	2.73	31.46	60.08	34.19	13.46	20.73	0.06	51.76	35.45	5.72	29.73	0.05	5.82
	27.94	3.27	24.67	79.26	24.45	4.00	20.45	0.06	20.64	25.61	14.30	11.31	0.12	118.12
平均				83.50				0.07	28.83				0.10	43.21
	125.2	18.30	106.9	208.44	113.32	21.60	91.72	0.35	16.55	134.25	47.3	86.95	0.25	22.94
120	100.37	11.24	89.13	117.82	96.26	13.21	83.05	0.11	7.32	112.69	25.7	86.99	0.20	2.46
job	99.71	4.27	89.44	97.15	98.29	28.39	69.90	0.08	27.95	92.86	32.97	59.89	0.17	49.34
	51.01	21.55	29.46	108.04	59.80	33.64	26.16	0.10	12.61	60.93	42.54	18.39	0.17	60.20
	40.42	2.44	37.98	77.74	42.08	13.95	28.13	0.06	35.02	48.59	23.52	25.07	0.13	51.50
平均		-		121.84		-		0.14	18.16				0.18	37.29

表1 单次预测下I-I-A与 AWA1 以及 RS 对比结果 ab.1 Comparison of results of I-I-A, AWA1, and RS in single predicti

目标函数值,I-I-A优化得到的目标函数值与GA优化得到的目标函数值之间的差值百分比用G表示, 表2汇总了每次实验10个实验结果的最大、最小、平均G和2种算法的运行时间。

表2各算例实验组下的平均G基本都在12%以上,60job时G的均值达到了29.61%,可见I-I-A的优化结果明显好于GA,并且I-I-A在运算时间上仍略优于GA特别是在作业规模较大的算例中平均节约时间在6s左右。I-I-A在设置了知识记忆库和末尾淘汰机制的情况下运算效率仍高于GA,侧面反映出I-I-A中已改进部分的高效性。

3.2.2 多次预测下调度计划后验对比实验

飞机装配项目中装配作业多且装配时间长,通 常存在多个关键作业也需进行多次预测和装配计划 调整的情况。图3给出了3次执行预测-重调度(采 用AWA1规则)后所有作业实际的总调度计划。图 中第3次预测-重调度后形成的总调度计划是第1、 2、3次预测-重调度过程累积而成的总调度计划,若 当前工位进入一个完全相同的新项目,该总调度计 划对制定新项目的装配计划具有重要参考价值。本 部分实验模拟多次预测-重调度过程并对比不同重 调度算法形成的实际总调度计划在目标函数上的表 现。该实验将工程中常用的AWA1规则改进成 AWA2(即作业按F。中开始时间的顺序排列),若同 时开始则*w_i*+*W_i*越大调度优先级越高,所有修复 作业插入至对应正常作业的后一位形成AWA2重 调度编码。

AWA1、AWA2与I-I-A的对比实验在 20job 的 算例下进行,列表[1,3,12,2,4,5,7,9,8,16,15,10, 11]用于挑选激发预测机制的作业,激发作业规模介 于区间[2,10]内,各规模下从列表中随机选择 30 组 不重复的作业并进行 30 组预测-重调度仿真模拟。 该实验采用 G_3 和 G_4 分别表示 I-I-A 与 AWA1、 AWA2得到的总调度计划在目标函数结果上的差值 百分比。

不同激发作业规模下30组对比实验的G₃和G₄

		Tab.2 Cor	nparison	of result	s of l	-I-A and	GA in sir	igle pred	iction		
					Ι	-I-A运行时	间/s		GA运行时间/s		
算例	实验组	最小G/%	最大G/%	平均G/%	最小	最大	平均	最小	最大	平均	
					时间	时间	时间	时间	时间	时间	
20	1	0	47.45	41.00	3.98	8.52	6.89	3.06	9.09	8.64	
. 1	2	-23.75	37.63	11.84	5.92	10.64	9.54	6.54	11.98	10.39	
Jop	3	0	41.93	10.45	5.16	10.65	9.07	6.22	11.42	10.05	
平均				21.10	5.02	9.94	8.50	5.27	10.83	9.69	
30	1	0	21.43	17.82	7.48	34.08	20.48	8.52	36.02	21.56	
	2	0	40.91	25.34	6.73	38.99	28.37	6.95	36.95	31.67	
Jop	3	0	57.70	45.68	8.21	36.17	26.61	7.98	34.90	28.96	
平均				29.61	7.47	36.41	25.15	7.82	35.96	27.40	
60	1	0	68.83	13.25	16.07	49.16	42.47	17.18	53.51	44.86	
00	2	-12.76	54.39	22.25	16.37	45.63	42.84	16.78	47.35	45.66	
Jop	3	-6.04	67.12	15.16	16.80	54.75	45.09	17.09	49.52	47.22	
平均				16.89	16.41	49.85	43.47	17.02	50.13	45.91	
00	1	-1.5	30.82	11.49	37.64	120.84	88.27	36.04	124.64	94.29	
	2	0	13.52	12.68	33.64	116.11	79.28	35.20	117.59	82.73	
Jop	3	0	19.46	12.31	35.96	118.42	86.65	37.82	121.22	93.58	
平均				12.16	35.75	118.46	84.73	36.35	121.15	90.20	
120	1	-4.08	49.47	19.66	54.99	185.19	130.64	57.56	185.83	132.70	
120	2	-13.07	62.49	15.77	56.72	202.38	117.33	61.23	202.44	122.43	
Jop	3	-9.54	41.50	21.41	59.32	218.82	127.14	64.42	216.78	138.43	
平均				18 95	57 01	202 13	125_04	61.07	201 68	131 19	

tions

分布分别如图4深色与浅色箱形图所示,图中十字 形点是30组数据里太大或者太小的数据视为异常 值的点。与图4相关的数据见表3。图4不同规模下 G₃和G₄的分布多为正数且形状相似,这说明I-I-A的 优化能力强于AWA1和AWA2并且I-I-A优于 AWA1和AWA2的程度基本相同。

表3中较小四分位值、中位值和较大四分位值 是将各激发规模下的30组G₃(G₄)升序排列后第 25%,第50%和第75%个位置的G₃(G₄)值,分别对 应图4矩形盒下、中、上3条线所示G值。表3较小 四分位值对应列的G值大部分都是正数说明多数 规模下的30组实验结果中I-I-A至少有75%的结 果优于AWA1或AWA2且30组G值中有75%的 数据大于表中所给值,但激发作业规模为3和5的

数据中也分别出现 G₄的较小四分位值是-2.54% 和-0.254%的情况,说明这2种规模下的 30 组实验 中至少有 25%的组数 I-I-A 的结果不如 AWA2好, 一定程度上反映出经改进的 AWA2规则在某些情 况下性能优于 I-I-A。进一步分析表 3,从 G 中位值 以及较大四分位值来看 G₃和 G₄均未再出现负数并 且 G₃和 G₄均值基本都大于 40%,说明 I-I-A 不仅能 在单次预测-重调度下生成贡献值较大的重调度计 划,多次预测-重调度后形成的总调度计划相比 AWA1和 AWA2 而言依然具有更高的贡献值,可 为新进入当前工位的装配项目提供更合理的装配 计划模板。

第48卷	
------	--

			-					
激发预测机制	I-I-A	AWA1	AWA2	G	G较小四分位	G	G较大四分位	G
作业规模	目标函数	目标函数	目标函数	类型	值/%	中位值/%	值/%	平均值/%
2个	_1 272	_5 545	-5 /17	G_3	36.08	66.39	84.24	56.38
	1.272	5.545	5.417	G_4	34.37	64.23	83.52	55.46
3个	-2 624	-5.26	-5.030	G_3	2.47	49.00	84.75	41.04
	2.024	0.20	0.000	G_4	-2.54	46.69	80.28	38.03
1	-2 060	-7 180	_7 272	G_3	38.79	63.11	75.71	51.08
41	2.000	7.400	1.212	G_4	36.72	62.60	75.71	47.60
г љ	-2 220	1 080	_1 659	G_3	14.93	59.35	75.55	43.31
5.1	2.230	4. 303	4.000	G_4	-0.254	57.65	69.23	39.42
6个	-2.225	_1 074	-1 722	G_3	11.11	53.22	77.45	45.18
	2.220	4. 574	4.722	G_4	3.66	47.68	77.02	42.34
7个	_2 779	_7 201	-6 201	G_3	15.51	56.27	70.99	49.13
	5.772	7.301	0.031	G_4	12.40	54.19	69.31	46.02
o 个	-5.005		- 8 100	G_3	19.97	40.85	56.59	42.69
0.1	-5.095	0.000	-8.400	G_4	18.21	38.05	54.40	39.56
0个	1 257	-0.600	_0 271	G_3	35.02	57.76	74.39	56.16
3.1	4.007	3.030	9.271	G_4	30.88	56.18	72.08	54.00
10 个	_4 015	-10.005	_0 612	G_3	34.50	50.73	70.86	52.55
1071	4.915	10.093	-9.612	G_4	33.79	49.23	68.00	50.23

表3 不同激发作业规模下目标函数值和*G*值表现情况 Tab.3 Performance of objective and *G* values in different scales of trigger jobs

3.3 整体框架性能分析

3.2节仅对比后端重调度算法并验证了I-I-A的 效果和效率,不能体现本文所提预测-重调度框架的 优势,本节将该框架与文献中经典的前摄调度框架 以及纯反应型重调度框架进行对比,对比实验中采 用了前摄-右移框架和反应-右移框架。前摄-右移框 架在初始调度计划中事先插入部分缓冲时间用以应 对可能的修复干扰,当有修复作业插入时采用右移 策略更新调度计划;反应-右移框架不插入缓冲时 间,仅在有修复作业加入时才采用右移策略更新调 度计划;本文框架在计划执行过程中主动 预测并基 于预测结果预调度一部分修复作业从而减少未来可 能的修复干扰。本文框架前端SVR预测模型的平 均准确率接近81%,各算例实验通过抽样仿真模拟 不同框架下计划执行的完整过程,修复场景根据作 业的合格概率随机抽样得到,各算例下的5组实验 抽样场景数均为50。需说明的是前摄-右移框架和 反应-右移框架除初始计划不同,其他无区别,使用 相同的抽样场景。本文框架、前摄-右移框架、反应-右移框架在50个仿真场景下得到的调度计划平均 周期时间见表4中的周期1、周期2和周期3,仿真中 实际右移次数的平均值见最后3列数据。

表4部分算例本文框架相比前摄-右移框架在调 度计划平均周期上缩短了10个单位左右,主要原因 是本文框架不在初始计划内插入缓冲而仅基于预测 结果预调度部分修复作业因此降低了缓冲时间的冗 余程度,实验结果也反映出前摄-右移框架事先插入

表4 各算例下不同框架仿真结果

Tab.4 Simulation results of different frameworks in each case

算例	初始	计划	周期	实验				右移	右移	右移
行自	本文	前摄	反应	归别	周期1	周期2	周期3	1	2	3
口心	框架	瞿 右移 右		粗加				1	2	5
				1	45	52	48	1	3	3
20	20 job 41		41	2	56	58	57	3	6	6
		48		3	57	58	57	6	8	8
job				4	61	64	59	6	10	10
				5	65	69	63	9	12	12
				平均	56.8	60.2	56.8	5	7.8	7.8
				1	88	91	88	3	4	4
			75	2	82	97	84	5	7	7
30	75	82		3	97	105	100	6	10	10
job	75			4	108	108	108	5	12	12
-				5	112	113	112	12	15	15
				平均	97.4	102.8	98.4	6.2	9.6	9.6
60 job	131	141	131	1	135	150	140	2	4	4
				2	152	162	154	7	8	8
				3	149	163	154	9	12	12
				4	162	167	162	8	15	15
				5	163	168	167	11	19	19
				平均	152.2	162	155.4	7.4	11.6	11.6
	175	197	175	1	179	204	184	2	4	4
				2	185	215	194	2	8	8
90				3	205	222	205	9	12	12
job	170			4	210	227	212	10	15	15
				5	227	246	230	13	19	19
				平均	201.2	222.8	205	7.2	11.6	11.6
		159	151	1	158	163	161	2	3	3
120 job				2	162	168	162	2	7	7
	151			3	170	183	176	4	10	10
	101			4	184	191	184	12	14	14
				5	182	200	190	10	17	17
				平均	171.2	181	174.6	6	10.2	10.2

的缓冲时间针对性弱预防作用较小;本文框架与反 应-右移框架在调度计划平均周期上非常接近但也 有近4个单位时间的减少并且平均右移数目也少了 近4次,这意味着本文框架减少了预期外质量修复 作业加入导致的事后型计划调整次数,进一步体现 出本文框架通过事前预测能准确预调度出一部分修 复作业便于在修复需求产生时直接按预调度计划执 行。但是,本文框架也需付出预测-重调度的运算时 间代价,由于算例中调度作业的时间单位未明确给 出,因此无法与算法时间单位(s)统一,更难将包括 预测部分在内的整体算法运行时间一同纳入调度仿 真中以给出包含运算时间的最接近应用实际的调度 计划周期,但是实际工程中可根据事前预测-重调度 与事后重调度消耗时间和成本的具体情况选择最合 适的框架。

4 结语

(1)以飞机移动装配线为背景,针对质量修复作 业的加入干扰调度计划的问题提出了基于预测机制 的装配作业重调度框架,框架前端训练了质量预测 模型,后端建立了作业重调度模型。

(2)提出了重调度算法 I-I-A 并通过不同的对比 实验验证有效性。总体看, I-I-A 在优化效果和效率 上均好于 GA;相比 AWA1 和 RS, I-I-A 虽能得到更 佳的优化结果但在简便程度和算法运行时间上的劣 势也较明显。

(3)相比现有文献中利用公式推导实现前摄调度,该框架可掌握更准确的实际装配信息进而得到 更准确的预测结果,有利于降低计划中所插缓冲时间或资源的冗余度。此外,相比起反应型调度方式, 本文框架更利于保持项目执行过程的稳定性。

(4)后续进一步优化前端预测模型并构建前后 端的集成优化模型。

参考文献:

- [1] PANDA D, RAMTEKE M. Reactive scheduling of crude oil using structure adapted genetic algorithm under multiple uncertainties [J]. Computers & Chemical Engineering, 2018, 116: 333.
- [2] LIU J, QIAO F, YUMIN M A, et al. Novel slack-based robust scheduling rule for a semiconductor manufacturing system with uncertain processing time [J]. Frontiers of Engineering Management, 2018, 5(4):507.

- [3] KANG K , SUBRAMANIAM V . Integrated control policy of production and preventive maintenance for a deteriorating manufacturing system [J]. Computers & Industrial Engineering, 2018, 118:266.
- [4] LIU Q, MING D, CHEN F F. Single-machine-based joint optimization of predictive maintenance planning and production scheduling [J]. Robotics & Computer Integrated Manufacturing, 2018, 51:238.
- [5] SHAHKARAMI S , MUSUMECI F , CUGINI F , et al. Machine-learning-based soft-failure detection and identification in optical networks [C]// Optical Fiber Communication Conference. California: Optical Society of America, 2018:1-3.
- [6] CUI W, LU Z, LI C, et al. A proactive approach to solve integrated production scheduling and maintenance planning problem in flow shops [J]. Computers & Industrial Engineering, 2018, 115:342.
- [7] TAN W , ZHANG Q , SUN Y . Proactive scheduling optimization of emergency rescue based on hybrid genetic-tabu optimization algorithm [J]. Human Centered Computing, 2016, 9567: 400.
- [8] BRUNI M E , DI P P L , BERALDI P , et al. An adjustable robust optimization model for the resource-constrained project scheduling problem with uncertain activity durations [J]. Omega, 2016, 71:66.
- [9] QIAO F , MA Y M , ZHOU M C , et al. A novel rescheduling method for dynamic semiconductor manufacturing systems [J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018, PP(99):1.
- [10] CREEMERS Stefan. Minimizing the expected makespan of a project with stochastic activity durations under resource constraints [J]. Journal of Scheduling, 2015, 18(3):263.
- [11] RAHMANI D , RAMEZANIAN R . A stable reactive approach in dynamic flexible flow shop scheduling with unexpected disruptions: A case study [J]. Computers & Industrial Engineering, 2016, 98:360.
- [12] WANG L , LU Z . Proactive approach for production and condition-based maintenance integration problem in a deteriorating system [J]. Journal of Shanghai Jiaotong University, 2019, 24(4):500.
- [13] LU B, ZHOU X . Opportunistic preventive maintenance scheduling for serial-parallel multistage manufacturing systems with multiple streams of deterioration [J]. Reliability Engineering & System Safety, 2017, 168:116.
- [14] 田兆青.轿车车身装配偏差流的状态空间建模方法及应用基础研究[D].上海:上海交通大学,2008.
 TIAN Zhaoqing. Study on state space modeling and application theory for stream of variation in auto-body assembly processes
 [D]. Shanghai: Journal of Shanghai Jiaotong University, 2008.
- [15] 孙涵,杨普容,成金华.基于Matlab支持向量回归机的能源 需求预测模型[J].系统工程理论与实践,2011,31(10):2001.
 SUN Han,YANG Purong,CHENG Jinhua. Forecasting model of energy demand based on Matlab support vector regression

[J]. Systems Engineering Theory & Practice, 2011, 31(10): 2001-2203.

- [16] 周安阳,戴青云,王美林,等.一种改进的免疫算法在车间调度中的研究[J].中国制造业信息化,2012,41(19):16.
 ZHOU Anyang, DAI Qingyun, WANG Meilin, *et al.* The study of an improved immune algorithm in flow shop scheduling
 [J]. Manufacture Information Engineering of China, 2012,41 (19):16.
- [17] RENH, XUH, SUNS. Immune genetic algorithm for multiobjective flexible job-shop scheduling problem [C]// 2016 Chinese Control and Decision Conference (CCDC). NingXia: IEEE, 2016;2199-2203.
- [18] LAMBRECHTS O , DEMEULEMEESTER E , HERROELEN W . A tabu search procedure for developing

(上接第1092页)

- [41] 庄茁,由小川,廖剑晖,等. 基于ABAQUS的有限元分析和应用[M]. 北京:清华大学出版社, 2009.
 ZHUANG Zhuo, YOU Xiaochuan, LIAO Jianhui, *et al.* Finite element analysis and application based on ABAQUS [M]. Beijing: Tsinghua University Press, 2009.
- [42] 中华人民共和国住房和城乡建设部.钢结构设计标准:GB 50017—2017[S].北京:中国建筑工业出版社,2017.
 Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for design of steel structures: GB 50017—2017[S]. Beijing: China Architecture & Building Press, 2017.
- [43] CHEN L Q. Phase-field models for microstructure evolution [J]. Annual Review of Materials Research, 2002, 32: 113.
- [44] 方修君,金峰,王进廷.用扩展有限元方法模拟混凝土的复合型开裂过程[J].工程力学,2007,24(Z1):46.
 FANG Xiujun, JIN Feng, WANG Jinting. Simulation of mixed-mode fracture of concrete using extended finite element method[J]. Engineering Mechanics, 2007, 24(Z1):46.
- [45] EL-TAWIL S, LI H, KUNNATH S. Computational simulation of gravity-induced progressive collapse of steel-frame buildings: Current trends and future research needs [J]. Journal

robust predicitive project schedules[J]. International Journal of Production Economics, 2008, 111((2):493.

- [19] VONDER S V D , DEMEULEMEESTER E , HERROELEN W. A classification of predictive-reactive project scheduling procedures[J]. Journal of Scheduling, 2007, 10(3):195.
- [20] 陆志强, 胡鑫铭, 朱宏伟. 物料供给不确定环境下的飞机移动 生产线动态调度方法[J]. 同济大学学报(自然科学版), 2018, 47(5):723.

LU Zhiqiang, HU Xinming, ZHU Hongwei. Dynamic scheduling method for aircraft moving assembly line under uncertain supply of material [J]. Journal of TongJi University (Natural Science), 2018, 47(5):723.

of Structural Engineering, 2014, 140(8): A2513001.

- [46] 胡晓斌,钱稼茹.结构连续倒塌分析与设计方法综述[J].建筑 结构,2006,36(S1):573.
 HU Xiaobin, QIAN Jiaru. Overview of analysis and design approaches for progressive collapse of structures [J]. Building Structure, 2006, 36(S1): 573.
- [47] SPACONE E, FILIPPOU F C, TAUCER F F. Fibre beamcolumn model for non-linear analysis of R/C frames: Part I. Formulation [J]. Earthquake Engineering & Structural Dynamics, 1996, 25(7): 711.
- [48] BAO Y, MAIN J A, NOH S Y. Evaluation of structural robustness against column loss: Methodology and application to RC frame buildings [J]. Journal of Structural Engineering, 2017, 143(8): 4017066.
- [49] Dassault Systèmes Simulia Corp. ABAQUS analysis user's manual version 6.14 [R]. Providence: Dassault Systèmes Simulia Corp., 2014.
- [50] STINGER S M, ORTON S L. Experimental evaluation of disproportionate collapse resistance in reinforced concrete frames[J]. ACI Structural Journal, 2013, 110(3): 521.