文章编号: 0253-374X(2021)08-1088-09

短焊钉布置对超高性能混凝土组合桥面板抗弯性能影响

徐晨¹,张乐朋¹,江震²,马骉²

(1. 同济大学 土木工程学院,上海 200092;2. 上海市政工程设计研究总院(集团)有限公司,上海 200092)

摘要:为考察短焊钉连接件布置对钢-超高性能混凝土 (UHPC)组合桥面板抗弯性能的影响,进行了焊钉间距分别 为200与300mm的2种足尺节段桥面板试件弯曲荷载试验 和基于UHPC塑性损伤模型的有限元参数化分析。试验结 果表明:在部分组合桥面板中,焊钉间距由200mm变为300 mm,UHPC开裂达0.05mm宽时对应的荷载等级提升了 12.5%,主要贡献是钢-UHPC组合效应减弱。UHPC开裂 达0.10mm宽时的拉应变平均值为1878×10⁻⁶,占材料极限 拉应变的59%。参数化分析结果表明:焊钉间距由100mm 增大至400mm导致组合桥面板弹性阶段抗弯刚度下降了 14.1%,但开裂荷载等级提升了84.2%。短焊钉间距增大使 部分组合桥面板结构受力趋向于更为经济,但需注意过大的 焊钉间距会导致焊钉疲劳破坏。

关键词: 钢-超高性能混凝土组合桥面板;短焊钉间距;受弯试验;有限元模拟;参数分析
 中图分类号: U443.33
 文献标志码: A

Effects of Short Stud Arrangement on Flexural Behavior of Ultra-High Performance Concrete Composite Bridge Decks

XU Chen¹, ZHANG Lepeng¹, JIANG Zhen², MA Biao²

 College of Civil Engineering, Tongji University, Shanghai 200092, China;
 Shanghai Municipal Engineering Design Institute (Group) Co., Ltd., Shanghai 200092, China)

Abstract: In order to investigate the effects of short stud arrangement on flexural behavior of steel-ultra-high performance concrete (UHPC) composite bridge decks, flexural tests of two full-scale segmental bridge deck specimens with a stud spacing of 200 and 300 mm respectively were performed, and a finite element parametric analysis based on the UHPC plastic damage model was conducted. The test results show that, as the stud spacing of partially-composited bridge decks increases from 200 mm to 300 mm, when the UHPC cracking reaches up to 0.05 mm in width, the corresponding load increases by 12.5 %. The main contributor is the weakening of the steel-UHPC combination effect. The average tensile strain of the UHPC is 1.878×10^6 as the cracking reaches 0.10 mm in width, accounting for about 59 % of the material ultimate tensile strain. The parametric analysis shows that as the stud spacing increases from 100 mm to 400 mm, the elastic bending stiffness decreases by 14.1 %, while the cracking load increases by 84.2 %. The increase of the short stud spacing makes the partially-composited bridge deck tend to be more mechanical-economical, but attention should be paid to the fatigue damage of the stud because of the too large stud spacing.

Key words: steel-ultra-high performance concrete(UHPC) composite bridge deck; short stud spacing; flexural test; finite element simulation; parametric analysis

超高性能混凝土(ultra-high performance concrete, UHPC)与正交异性钢桥面板通过连接件结合可显著提高钢桥面板刚度、降低钢结构疲劳开裂风险以及减缓铺装层结构病害^[1-3]。UHPC立方体抗压强度一般为120~150 MPa,单轴抗拉强度可达7 MPa以上,且具优良的大应变拉伸硬化特征^[4]。

钢-UHPC组合桥面板中连接件是保证结构组 合效应的关键,主要形式包括焊钉、型钢以及短钢筋 网等,焊钉是其中的常用连接件。钢-UHPC组合桥 面板中UHPC板厚小,焊钉长仅40mm左右,直径 为13mm,长径比约为3,这与常规组合梁中的焊钉 长径比不同。另一方面,钢-UHPC组合桥面板主要 为刚度及疲劳控制设计,焊钉间距一般较大,截面应 变分布具有明显的不连续特性,呈显著的部分组合 特征,这与常规组合梁中的焊钉布置有较大的不同。

收稿日期: 2021-04-23

基金项目:国家自然科学基金(51978501)

第一作者:徐晨(1982—),男,副教授,博士生导师,工学博士,主要研究方向为钢与组合结构桥梁与功能复合材料的开发与应用.E-mail:xuchenprc@tongji.edu.cn

通信作者:马骉(1961一),男,教授级高级工程师,主要研究方向为桥梁设计.E-mail:mabiao@smedi.com

可见组合梁中焊钉抗剪设计方法并不完全适用于钢-UHPC组合桥面板中的短焊钉连接件。近年来,钢-UHPC组合桥面板在新建桥梁与改造旧桥项目中的应用正迅速增加^[5],焊钉连接件的合理布置是影响结构安全及经济性的关键。

针对钢-UHPC组合桥面板中短焊钉连接件的 研究主要是考察连接件自身的静力与疲劳特性^[6-8], 而焊钉布置间距对组合桥面板组合效应的影响规律 并不明确,钢-UHPC组合桥面板刚度计算理论并不 完善,这对该类构件的应用推广以及包含该类构件 的受力可靠性造成影响。李文光等^[9]对钢-UHPC组 合简支板进行了静力受弯试验研究,发现正弯矩作 用下其破坏形态为板端焊钉被剪断,而后通过理论 分析推测加密焊钉布置可提高组合板的承载力与延 性;Luo等^[10]通过对钢-UHPC组合板进行静力受弯 试验以研究组合桥面板横桥向开裂特性,试验结果 表明焊钉间距由150 mm 增大为200 mm 会导致 UHPC开裂荷载降低并促进裂缝发展。这些研究均 表明焊钉间距的确对组合桥面板的抗弯性能具有 影响。

综上所述,焊钉间距对钢-UHPC组合桥面板组 合效应、结构刚度、UHPC开裂特性等的影响规律并 未明确,这些均为建立成熟组合桥面板设计理论的 重要基础。本文依托某工程对钢-UHPC组合桥面 板中短焊钉的合理布设展开研究,通过足尺节段桥 面板在两种工况下的弯曲荷载试验以及基于材料弹 塑性损伤模型的有限元参数化分析考察了短焊钉间 距对结构组合效应、抗弯刚度、负弯矩区UHPC开裂 特性以及焊钉受剪作用等的影响规律,为焊钉间距 合理化设计提供理论基础。

1 试验设计

1.1 试件设计

本文设计制作了2个带球扁钢加劲肋的足尺节 段钢-UHPC组合桥面板试件。如图1所示,试件长 7 000 mm、宽 1 960 mm、高 488 mm;加劲肋高 180 mm,厚 11 mm,间距 400 mm;横肋间距 2 000 mm。 UHPC 板厚与钢盖板厚分别为 60 与 12 mm;UHPC 板内纵横向钢筋直径 16 mm,间距 100 mm,保护层 厚度 15 mm。试件中焊钉直径和高度分别为 13 和 40 mm。两个试件的焊钉间距分别为 200 mm×200 mm 与 300 mm×300 mm,试件编号分别为 D200 和 D300。UHPC 浇筑完成后在夏季室外环境覆膜养 护,环境温度约为 20 ℃~30 ℃。

Fig. 1 Schematic diagram of specimens (unit: mm)

1.2 材性试验

表1所列为UHPC分别养护7与28d按标准试验方法^[11]测得的材料基本力学性能,材性试件与桥面板试件在同场地养护。通过对一组3个哑铃型试件(中间段截面尺寸50mm×100mm)进行轴拉试验,测得UHPC的平均拉伸应力-应变曲线,如图2所示,曲线峰值点对应极限抗拉强度与极限抗拉应变。所用UHPC的钢纤维体积掺量为2.3%。按照标准试验方法^[12]测得钢板与钢筋的材性试验结果: 16mm直径钢筋屈服强度与极限强度分别为480与689MPa;11mm厚与12mm厚钢板屈服强度分别为455与411MPa,极限强度分别为607与547MPa。

表1 UHPC材性试验结果 Tab.1 Material property test results of UHPC

养护龄期/d	立方体抗压强 度/MPa	轴心抗压强度/ MPa	弹性模量/ GPa	抗折强度/ MPa	初裂抗拉强 度/MPa	初裂应变/ 10 ⁻⁶	极限抗拉强 度/MPa	极限抗拉应 变/10 ⁻⁶
7	100.8	94.1	57.0	21.2	8.3	174	9.7	2 650
28	127.4	109.0	47.9	25.3	8.5	190	11.0	3 200

1.3 加载方案

本试验包含2种加载工况。工况1为4道横肋

连续支承的两跨跨中同步加载工况(图3),主要考察 试件在连续支承情况下焊钉间距对挠度发展、负弯

图2 28 d 龄期 UHPC 轴拉应力-应变曲线

Fig. 2 Uniaxial tensile stress-strain curve of 28-dayold UHPC

矩区UHPC开裂特性等的影响规律;工况1加载时, 在4[#]支承处配置40kN压重以防脱空。分级单调加 载至负弯矩区UHPC最大裂缝宽度达0.10mm时, 即停止加载并卸载作动器至0。随后撤去2[#]、3[#]支承 与作动器1,转换进入两端简支跨中加载工况(以下 简称工况2)。工况2主要考察焊钉间距对组合桥面 板正弯极限状态的影响规律。试验中监测了关键截 面挠度、各构件应变、UHPC裂缝宽度等数据。

2 试验结果与分析

2.1 荷载-挠度曲线

图4a所示为工况1下试件中跨的荷载-挠度曲 线。挠度为跨中2-2截面处(图3)挠度计的平均结 果。在工况1下,两个试件初开裂均发生在中支点 1-1截面处(图3),随荷载增加裂缝沿桥面板横向发 展。可见两个试件的荷载-挠度曲线近似直线且基 本重合,表明试件保持在弹性状态,焊钉间距分别为 200 mm与300 mm对连续支承下组合桥面板抗弯刚 度影响并不明显。

图4b所示为工况2下试件的荷载-跨中挠度曲 线。曲线包含弹性阶段,塑性发展阶段和失效阶段。 在塑性发展阶段,跨中纵肋底缘受拉屈服,产生塑性 变形;在失效阶段,跨中纵肋塑性变形快速发展,跨 中UHPC顶部压溃。图5所示为试件D200在工况2 下的极限状态,两个试件极限状态相似。定义每延 米截面正弯弹性极限弯矩为工况2下跨中2-2截面 纵肋底缘应变达2004×10⁻⁶(材性试验所得11 mm 厚钢板屈服应变)时,横桥向每延米截面所承受的弯 矩。试件D200与试件D300该值分别为194.9与 187.8 kN·m,试件D300较试件D200降低了3.7%。 定义每延米截面正弯承载能力极限弯矩为工况2下 跨中荷载达到最大值时,横桥向每延米跨中2-2截面 所承受的弯矩。试件D200与试件D300该值分别为 359.7与342.8 kN·m,为各自正弯弹性极限弯矩的 1.8~1.9倍,表明试件在纵肋底缘受拉屈服后仍有 较高的安全储备。

Fig. 4 Load-deflection curves of specimens

2.2 负弯矩区UHPC开裂特性

工况1下,试件D200和试件D300首次观察到 0.05 mm 宽裂缝的荷载等级分别为400与450 kN, 试件D300的荷载较试件D200提升了12.5%。试 件D200和试件D300分别于单个作动器为850与 900 kN时最大裂缝宽度达0.10 mm,图6所示为两 个试件该状态时的裂缝分布图。可见试件D200中 的裂缝长度较试件D300更长,开裂更为明显,图中 虚线箭头指向裂缝宽0.10 mm位置处。考虑到主梁 体系对组合桥面板受力的不利影响,保守定义每延

米截面负弯弹性极限弯矩为工况1下中支点1-1截 面UHPC裂缝宽达0.10mm时,横桥向每延米截面 所承受的弯矩。试件D200与试件D300该值分别为 152.0与160.7 kN·m,试件D300较试件D200提高 了5.7%。该状态下两个试件UHPC板受拉边缘纵 向应变最大值的平均结果为1878×10⁻⁶,约占材料 极限拉应变的59%。图7所示为工况1下中支点11截面处UHPC板受拉边缘纵向应变发展曲线,应 变值取未受开裂影响测点的平均结果。可见试件 D200更早达到初裂应变。

以上现象表明,焊钉间距由200 mm增大至300 mm对连续支承组合桥面板负弯矩区UHPC抗裂性 能更为有利。

图6 负弯矩区UHPC裂缝分布(工况1)(单位:mm)

Fig. 6 Distribution of UHPC cracks at negative moment area (Condition 1)(unit:mm)

2.3 截面弯矩使用率分析

基于结构力学最不利内力计算方法并按照规范 [13]计算得到在试验试件上布置单车道的车辆荷载 作用下,跨中2-2截面与中支点1-1截面所产生的最 大每延米截面正、负弯矩值分别为15.8与19.3 kN· m。根据2.1节与2.2节中得到的每延米截面正、负 弯弹性极限弯矩可得到在仅考虑单车道车辆荷载作 用情况下的试件截面弯矩使用率。计算结果表明, 试件D200的中支点1-1截面与跨中2-2截面弯矩使 用率分别为12.7 %与8.1 %;试件D300中对应两 处截面弯矩使用率分别为12.0 %与8.4 %。中支 点1-1截面弯矩使用率平均高于跨中2-2截面近 50%,表明连续支承组合桥面板中,中支点截面更易成为控制设计截面。

3 钢-UHPC组合桥面板静载试验有限 元模拟

本节建立了考虑材料弹塑性损伤的实体板壳有 限元模型对试验过程进行模拟。将计算结果与试验 结果对比以检验模拟可靠性。

3.1 有限元模型与材料本构

采用ABAQUS建立有限元模型,UHPC板、钢筋、钢结构、焊钉分别采用C3D8R单元、T3D2单元、

S4R单元、Connector单元模拟。模型编号为DS200 与DS300,分别对应试件D200与试件D300。

UHPC 受拉本构曲线如图2所示。受压本构关 系以文献[14]中提出的拟合公式计算。棱柱体抗压 强度与初始弹性模量按28d龄期的材性试验结果设 置,受压峰值点应变取2550×10⁻⁶,试验拟合参数根 据文献[15]中研究结果取2.0。模型中引入混凝土 塑性损伤模型以模拟UHPC受拉开裂特征。按式 (1)在应力-应变曲线的基础上推导应力-非弹性应 变曲线,按式(2)推导损伤因子-非弹性应变曲线[16]。

$$\varepsilon_{\rm in} = \varepsilon - \sigma/E$$
 (1)

$$d = 1 - \frac{\sigma}{(\varepsilon - \varepsilon_{\rm pl})E} \tag{2}$$

式中: ϵ_m 为非弹性应变;E为初始弹性模量;d为损伤 因子; $\epsilon_{\rm n}$ 为塑性应变,文献[16]中假定 $\epsilon_{\rm n} = \beta \epsilon_{\rm in}, \beta$ 根 据文献[17]中研究结果取0.7。

UHPC其他材性参数参照文献[18]设置。钢 板、钢筋本构关系采用基于材性试验结果的双折线 弹塑性模型, 泊松比与弹性模量分别设置为0.3与 210 GPa。焊钉剪切刚度采用基于同型号焊钉推出 试验结果的非线性模型定义^[19]。此外,模型的支承 与加载条件与试验试件一致,在UHPC顶面选取试 验中分配梁作用区域设置面荷载(工况1)与位移荷 载(工况2)以模拟试验加载。

3.2 有限元模拟结果验证

图8a所示为工况1下计算与实测所得荷载-跨 中挠度曲线,图8b与图8c分别所示两个模型在工况 2下的荷载-挠度曲线对比,可见计算结果与实测结 果吻合较好,验证了有限元模拟方法的准确性。

Comparison of load-deflections Fig. 8

钢-UHPC 组合桥面板短焊钉间距 4 参数化分析

基于得到验证的有限元模型,展开焊钉间距参 数化分析。参考规范[20],参数化分析中焊钉间距 取值范围为100~400 mm,按50 mm等间隔取值,焊 钉横纵向间距相等。各模型以"DS+焊钉间距" 编号。

4.1 荷载-挠度曲线

图9所示为工况1下部分模型的荷载--跨中挠度

曲线。可见焊钉间距增大导致模型抗弯刚度出现退 化。以曲线上250 kN对应点的割线斜率作比较,相 比于DS100,DS200、DS300、DS400的刚度分别退化 了 8.6 %、12.5 %,14.1 %。这对控制组合桥面板 局部下挠是不利的。

表2所列为工况2下由各模型计算得到的跨中 2-2截面每延米正弯弹性极限弯矩和相比于DS100 的增长率。可见焊钉间距增大导致每延米截面正弯 弹性极限弯矩降低。相比于DS100,DS400每延米 截面正弯弹性极限弯矩降低比例仅为8.3%。

4.2 组合桥面板截面应变分布

图 10 所示为工况 1 下部分模型在单个跨中荷载 达 250 kN时结构纵向应变沿中支点 1-1 截面高度分 布,此时模型中UHPC尚未开裂。可见UHPC板与 正交异性钢板交界面处存在显著的应变突变,表明 模型处于部分组合状态。随焊钉间距增大,交界面 处应变不连续差值逐渐增大(差值标注于图中交界 面处)。相比于DS100,DS400该值增大了60.3%。 表明钢-UHPC组合效应随焊钉间距增大逐渐减弱。

4.3 负弯矩区 UHPC 受力状态与钢筋应力发展

图11为工况1下部分模型中支点1-1截面UHPC 受拉边缘主拉应力平均值的发展曲线。表3列出由各 模型得到的开裂荷载和相比于DS100的增长率。开裂 荷载定义为模型中主拉应力平均值超过UHPC 28 d初 裂抗拉强度(8.5 MPa)时对应荷载。DS200与DS300 的开裂荷载与试验中裂缝宽达0.05 mm时对应试件荷 载等级基本吻合。由表3可知,开裂荷载等级随焊钉 间距增大而显著提升。相比于DS100,DS400的开裂 荷载等级提升了84.2 %。

表2 跨中2-2截面每延米正弯弹性极限弯矩汇总(工况2)

 Tab. 2
 Summary of positive elastic limit bending moment of mid-span per meter section 2-2 (Condition 2)

模型编号	焊钉间距/mm	2-2截面每延米正弯弹性极限弯矩/(kN•m)	增长率/%
DS100	100	209.8	
DS150	150	206.4	-1.6
DS200	200	203.4	-3.1
DS250	250	201.4	-4.0
DS300	300	197.0	-6.1
DS350	350	194.5	-7.3
DS400	400	192.3	-8.3

表3同时列出中支点1-1截面每延米的负弯弹性极限弯矩。由于模型中无法直接得到裂缝宽度,以受拉损伤因子代为表征。DS200与DS300在850与900

kN时(对应试件UHPC裂缝宽达0.10mm时荷载等级) 1-1截面UHPC平均受拉损伤因子分别为0.486与 0.494,故取平均值0.490表征UHPC开裂宽度达0.10

mm。由表3可知,焊钉间距增大导致1-1截面每延米 负弯弹性极限弯矩显著增长。相比于DS100,DS400 该值增长率达67.8%。

图12所示为工况1下部分模型中支点1-1截面处 钢筋平均纵向应力发展曲线。各模型钢筋均呈现出裂 后拉伸硬化现象。随焊钉间距减小,钢筋纵向应力的 增加速率显著增大,在UHPC开裂后尤为明显。另一 方面,随焊钉间距增大,钢筋纵向应力值减小。这是由 于模型中纵向钢筋布置于UHPC板厚中间位置,焊钉 间距增大带来的组合效应减弱使得UHPC板呈现出独 立受弯的趋势。

 Tab. 3
 Summary of cracking load and negative elastic limit bending moment of support per meter section 1-1 (condition 1)

模型编号	焊钉间距/mm	开裂荷载/kN	增长率/%	1-1截面每延米负弯弹性极限弯矩/(kN•m)	增长率/%
DS100	100	298.3		108.6	
DS150	150	376.1	26.1	136.7	25.9
DS200	200	420.3	40.9	152.9	40.7
DS250	250	439.4	47.3	157.0	44.5
DS300	300	452.0	51.5	158.2	45.6
DS350	350	513.2	72.0	179.0	64.8
DS400	400	549.5	84.2	182. 3	67.8

Fig. 12 Development of longitudinal stress of reinforcements at cross-section 1-1

4.4 焊钉受剪作用水平

在模型中设置多个工况模拟不同位置处的单车道 车辆荷载^[13]与疲劳荷载计算模型Ⅲ^[20],分别得到焊钉 所承受的最大剪力与最大剪应力幅。计算结果表明, 随焊钉间距增大,单个焊钉所承受的最大剪力与最大 剪应力幅提高。根据规范[20]计算得到试件中焊钉的 抗剪承载力为25.5 kN,大于DS400中最大焊钉剪力 18.7 kN,但DS400中焊钉的最大等效剪应力幅超过规 范[20]中的限值(90 MPa)19 %,DS350中焊钉的最大 等效剪应力幅为88.2 MPa,已十分接近限值。

4.5 截面弯矩使用率对比

以表2与表3中所列跨中2-2截面与中支点1-1 截面的每延米截面弹性极限弯矩与2.3节中计算得 到的单车道车辆荷载作用下的每延米截面弯矩,计 算各模型1-1、2-2截面弯矩使用率(图13)。可见随 焊钉间距增大,中支点1-1截面的弯矩使用率明显降 低,同时,跨中2-2截面的弯矩使用率提高并不明显, 两处截面的弯矩使用率逐渐接近相等,提示结构受 力趋向于更为经济。

5 结论

本文通过对2个焊钉间距分别为200 mm和300 mm的足尺节段钢-UHPC组合桥面板试件进行弯曲荷 载试验以及考虑材料弹塑性损伤的有限元参数化分析, 考察了长径比小于4的短焊钉间距对钢-UHPC组合桥 面板抗弯性能的影响规律,结论总结如下:

(1)根据连续支承两跨跨中加载试验结果,相比于 焊钉间距200 mm的部分组合桥面板,焊钉间距增大为 300 mm时,桥面板负弯矩区UHPC开裂达0.05 mm宽 时对应荷载等级提升了12.5%,开裂达0.10 mm宽时 UHPC板裂缝长度较短,此时UHPC拉应变平均值为 1878×10⁻⁶,约占材料极限拉应变的59%。

(2)根据简支跨中加载试验结果,焊钉间距从200 mm增大为300 mm时,跨中截面纵肋底缘达到屈服时 对应的每延米截面弹性极限弯矩下降了3.7%,试件 在纵肋底缘受拉屈服后仍有较高的安全储备。截面弯 矩使用率分析表明,在连续支承钢-UHPC组合桥面板 中,中支点截面更易成为控制设计截面。

(3)根据焊钉间距有限元参数化分析结果,相比于 焊钉间距100 mm,增加焊钉间距至400 mm时,组合桥 面板弹性阶段抗弯刚度下降了14.1%,开裂荷载等级 显著提升了84.2%。此外,从截面弯矩使用率角度而 言,短焊钉间距增大使得部分组合桥面板结构受力趋 向于更为经济,但需注意过大的焊钉间距会导致焊钉 疲劳破坏。

作者贡献说明:

徐晨:指导试验设计、数据分析、论文写作与修改。 张乐朋:参与试验设计、数据分析及论文初稿的写作与修改。 江震:参与试验设计与数值分析。 马骉:理论分析。

参考文献:

- SHAO X D, YI D T, HUANG Z Y, *et al.* Basic performance of the composite deck system composed of orthotropic steel deck and ultrathin RPC layer[J]. Journal of Bridge Engineering, 2013, 18 (5):417.
- [2] ZHU Z W, YUAN T, XIANG Z, et al. Behavior and fatigue performance of details in an orthotropic steel bridge with UHPCdeck plate composite system under in-service traffic flows [J]. Journal of Bridge Engineering, 2017, 23(3):04017142-1.
- [3] DIENG L, MARCHAND P, GOMES F, *et al.* Use of UHPFRC overlay to reduce stresses in orthotropic steel decks[J]. Journal of

Constructional Steel Research, 2013, 89:30.

- [4] 王俊颜,耿莉萍,郭君渊,等. UHPC 的轴拉性能与裂缝宽度控制 能力研究[J].哈尔滨工业大学学报,2017,49(12):165.
 WANG Junyan, GENG Liping, GUO Junyuan, *et al.* Experimental study on crack width control ability of ultra-high performance concrete[J]. Journal of Harbin Institute of Technology,2017,49 (12):165.
- [5] 中国混凝土与水泥制品协会UHPC分会.2019年度中国超高性 能混凝土(UHPC)技术与应用发展报告[J]. 混凝土世界, 2020(2):30.

China Concrete and Cement-based Products Association. China's ultra high performance concrete (UHPC) technology and application development report in 2019 [J]. Concrete World, 2020 (2):30.

- [6] 邵旭东,周环宇,曹君辉.钢-薄层 RPC组合桥面结构栓钉的抗 剪性能[J]. 公路交通科技,2013,30(4):34. SHAO Xudong,ZHOU Huanyu,CAO Junhui. Shear behavior of studs of composite deck system composed of steel and ultra-thin RPC layer[J]. Journal of Highway and Transportation Research and Development,2013,30(4):34.
- KIM J S, KWARK J W, JOH C B, *et al.* Headed stud shear connector for thin ultrahigh-performance concrete bridge deck[J]. Journal of Constructional Steel Research, 2015, 108:23.
- [8] 李嘉,杨波,邵旭东,等.钢桥面-薄层CRRPC组合结构栓钉连接件抗剪疲劳性能研究[J]. 土木工程学报,2016,49(6):67.
 LI Jia, YANG Bo, SHAO Xudong, *et al.* Research on shear fatigue of studs for composite deck system of steel slab and thin CRRPC layer[J]. China Civil Engineering Journal,2016,49(6):67.
- [9] 李文光, 邵旭东, 方恒, 等. 钢-UHPC组合板受弯性能的试验研究[J]. 土木工程学报, 2015, 48(11):93.
 LI Wenguang, SHAO Xudong, FANG Heng, *et al.* Experimental study on flexural behavior of steel-UHPC composite slabs[J].
 China Civil Engineering Journal, 2015, 48(11):93.
- [10] LUO J, SHAO X D, FAN W, et al. Flexural cracking behavior and crack width predictions of composite (steel+UHPC) lightweight deck system[J]. Engineering Structures, 2019, 194:120.
- [11] 全国混凝土标准化技术委员会.活性粉末混凝土:GB/T 31387 —2015[S].北京:中国标准出版社,2015.
 National Standardization Technical Committee for Concrete.
 Reactive powder concrete:GB/T 31387—2015[S]. Beijing:China Standard Press,2015.
- [12] 中华人民共和国国家质量监督检验检疫总局.金属材料 室温拉 伸试验方法:GB/T 228—2002[S].北京:中国标准出版社,2002.
 General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Metallic materials — Tensile testing at ambient temperature:GB/T 228—2002[S].
 Beijing:China Standard Press,2002.
- [13] 中华人民共和国交通运输部.公路桥涵设计通用规范:JTG D60 -2015[S].北京:人民交通出版社,2015.
 Ministry of Transport of the People's Republic of China.General

specifications for design of highway bridges and culverts: JTG D60—2015[S]. Beijing: China Communications Press, 2015.

- [14] 单波.活性粉末混凝土基本力学性能的试验与研究[D].长沙: 湖南大学,2002.
 SHAN Bo. Experiment and research on basic mechanical properties of reactive powder concrete [D]. Changsha: Hunan University,2002.
- [15] 管品武,涂雅筝,张普,等. 超高性能混凝土单轴拉压本构关系研究[J]. 复合材料学报,2019,36(5):1295.
 GUAN Pinwu, XU Yazheng, ZHANG Pu, et al. A review on constitutive relationship of ultra-high-performance concrete under uniaxial compression and tension[J]. Acta Materiae Compositae Sinica,2019,36(5):1295.
- [16] LEE J, FENVES G L. Plastic model for cyclic loading of concrete structures[J]. Journal of Engineering Mechanics, 1998, 124(8):892.
- [17] 张劲,王庆扬,胡守营,等. ABAQUS 混凝土损伤塑性模型参数 验证[J]. 建筑结构,2008(8):127.
 ZHANG Jin, WANG Qinyang, HU Shouying, et al. Parameters

verification of concrete damaged plastic model of ABAQUS[J]. Building Structure, 2008(8):127.

- [18] KMIECIK P, KAMIŃSKI M. Modelling of reinforced concrete structures and composite structures with concrete strength degradation taken into consideration [J]. Archives of Civil and Mechanical Engineering, 2011,11(3):623.
- [19] 张渤雨.后结合钢-UHPC组合桥面板收缩效应及静力性能试验研究[D].上海:同济大学,2020.
 ZHANG Boyu. Experimental study on shrinkage effect and static performance of steel UHPC composite deck[D]. Shanghai: Tongji University,2020.
- [20] 中华人民共和国交通运输部.公路钢混组合桥梁设计与施工规 范:JTG/T D64-01—2015[S].北京:人民交通出版社,2015. Ministry of Transport of the People's Republic of China. Specifications for design and construction of highway steel-concrete composite bridge: JTG/T D64-01—2015[S]. Beijing: China Communications Press,2015.