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Precise Decision-Making Learning for
Automated Vehicles in Lane-Change
Scenario Based on Parameter Description
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Abstract: To promote safety and fully consider human
drivers” acceptance, precise decision-making is realized
for automated vehicles under the lane-change scenario in
this paper. More specifically, automated vehicles not only

decide to change lanes or not but also decide specific
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microcosmic behaviors, such as lane-change time and
expected acceleration. Thus, precise decisions for lane-
change are described with three parameters and learned
by reinforcement learning. The rationality of such
parameter-based precise decisions is shown in two
aspects. First, different values of decision parameters will
notably influence the planned trajectory, which means
other microcosmic behaviors will be a significant
uncertainty when they are not precisely decided in the
decision-making layer. Secondly, based on the analysis of
real traffic data,
and expected acceleration are revealed in lane-change

NGSIM, changeable lane-change time,

behaviors, which is seldom explicitly considered in the
decision-making layer of current researches. The decision
parameters that include lane-change time and expected
acceleration are learned with kernel-based least-squares
policy iteration reinforcement learning (KLSPI). Safety,
current driver’s willingness, and average human driving
style are considered in the reward function. Simulation
results demonstrate that using reinforcement learning
(RL) to learn decision parameters can realize more
precise decisions, promote safety performance, and
imitate human drivers” behaviors in the lane-change

scenario.

Key words: automated vehicle; driving decision; real

traffic data; lane-change

Automatic control will be fully realized from the

decision-making layer to the planning layer in

[1-2]

automated  vehicles In a higher-performance

autopilot ~ driving system, the human driver's

willingness and diverse driving preference should also
be taken into consideration to improve the acceptance
in either general or individual human drivers™®”.
However, the human’s decision process is much more
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complicated to be captured with a mathematical model®
and has no obvious multi-layer hierarchical framework

as same as autopilot driving system”.

Meanwhile,
human behavior is influenced by driving style and
skills®”, which is different in both the decision-making
and planning layers for different drivers.

In previous researches, learning-based methods
have obtained great attention to learn human-like

driving behaviors"

Beyond numerous learning-
based methods, reinforcement learning (RL) , as a
model-free method for sequential control, is widely

researched  in i,

decision-making Generally
speaking, RL learns with reward signal, which can
not only be physical measurements about safety
constraints, like the distance between the host vehicle
and surrounding vehicles but also can be the
correspondence with human's decision.

As it is hoped that the autopilot driving system
can ensure safety performance as well as respect
human willingness, using parameters that can be
some physical measurements to describe decisions

[12-13

helps to make more precise decisions'*"" and realize

such performance for the following reasons.
Regarding vehicle's motion, despite macroscopical
behavior, such as lane change or not, microcosmic
behaviors, such as lane-change time and expected
acceleration, will also influence a vehicle's trajectory.
Specific microcosmic behaviors actually will fix the
trajectory under a smaller range. If macroscopical
behaviors are only used to describe a decision,
decisions will be much more conservative to keep safe
and different from human drivers. Meanwhile,
different drivers and the driving situations will reflect
microcosmic behaviors. In the driving process, a
driver will make decisions with driving experience
naturally to predict the influence of these microcosmic
behaviors, which will lead to some specific or
intelligent behaviors, like accelerate to cut in or
reduce the time for lane-change when the distance gap
is not sufficient, especially in heavy traffic"*,

The precise decision-making method based on
parameter description in the lane-change scenario is
investigated in this paper. The overall framework 1s

shown in Fig. 1, which mainly focuses on the RL.-

based decision-making module and the model
predictive control (MPC) -based trajectory planning
module. The first contribution is to analyze the
rationality of parameter-based precise decisions
framework in two parts. First, the influence on
trajectory under different lane-change time and
expected acceleration are shown basing on the
designed trajectory planning controller. Second, a
comparison 1s made to show different decision
The

trajectory planning controller used here is proposed in

parameters between real driving profiles.
reference [ 15] and will be extended in this research
to realize precise decision-making. The public dataset
of vehicle trajectories used here is from NGSIM, a
program developed by the US Federal Highway

Administration™”.

The second contribution is to
design the learning-based precise decision-making
method. The lane-change decision-making problem is
modeled as a Markov decision process (MDP) in the
parameter decision framework. The reward function
considers the human driver's willingness and safety
situation. Thus, the learning promotes the safety
performance on the potential dangerous driving
scenario and imitates actual human drivers' behavior
in NGSIM. The kernel-based least-squares policy
iteration reinforcement learning (KLSPI) that is
proposed in reference [16] is used to solve this
problem. In the simulation, the driving scenarios are
recognized and divided into three sample sets for
learning and evaluation. By training, the parameter-
based precise decisions are realized, and simulation

results are also shown.

1 Analysis of potential performance
with parameter decision framework

The trajectory planning controller is described in
Fig. 1. Based on this controller, parallel simulations
with different decision parameters are conducted to
show its influence on the planned trajectory. The real
traffic data, NGSIM, are analyzed to find out the
range of decision parameters that fit the trajectory
planning  controller  and

potential ~ promoted

performance in the decision layer.
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Fig.1 Diagram of framework

1.1 Optimization trajectory planning controller

The trajectory planning controller is designed
with nonlinear model predictive control in the
parameter decision framework'"”. The main intention
is to simplify the implementation of driving behavior
by only constraining terminal states to fit with the
road segment. For example, on a straight road, as
shown in Fig. 2, at the end time step in lane-change
and lane-keeping, the vehicle's lateral position should
be on the center of the target lane and will stay on the
lane (the same heading angle with the target lane,
zero yaw rate, and lateral acceleration). Meanwhile,
the sequence of control inputs is directly optimized to
obtain a feasible trajectory without a reference

polynomial function or B-spline trajectory.

Road centerline s
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Fig.2 Diagram of the straight-road scenario

The nonlinear motion control model x=f(x, u)

1s established as:

U, COS@ — U, SIN@
U, Sin@ + v, COS @
wl’

flx,u)= ¢ (D

Lol
T F N f F wr

1 1
MF.V/ + MF.W LW,

where: the vector of states is x=[ X, Y, ¢, v,, v,, @, ],

X and Y are the positions, ¢ is the heading angle, v, and

v, are the longitudinal and lateral velocity, w, is the yaw

rate; the vector of control inputs is « = a, J,], &, is the
steering-wheel angle, the simple longitudinal dynamics
v, =—a 1s considered to simplify the motion control
model; M is the mass of the vehicle; I, is the moment of
inertia of the vehicle around the z-axis; /;and /, are the
distances from the center of gravity (CoG) to the front
and rear axles, respectively. The linear tire model is
considered, and the tire slip angle of the front wheel a;,
and rear-wheel @, can be linearized with the small slip
angle, the lateral tire force F',;and F,, on the front and

each rear tires is written as:

v, -+ Lw,
Fy~—C(——— : — 0y,

’U—Zblw 2
FW%_CF¥’
’ U.r

where: C;and C, are the cornering stiffness values of
the front and rear tires, respectively.

The trajectory planning problem in the straight
scenario  at  decision

lane-change parameters

(Y, T, a.,)is formulated after discretization as™**’:

T—1

min > (el oIl 4 llaw — al £)[12)

S e+ D— ul )
stalk+D=z(B)+f(x(k),uk))ne 3
umin < u( k )< umax
v,(T)=0, w,(T)=0
o(T)=0, Y(T)=Y;

Q, P, R are the
Y, €10, L,

target lane, which is different in lane-keeping and

where: weighting  matrices;

— L} is the lateral offset to the center of
lane-change; L is the distance between two
neighboring lanes. The lane-change time T decides
the predictive horizon. As have illustrated before, the
terminal equality equation ensures that the lane-
change behavior is finished in the predictive horizon

without a reference trajectory.



% S1 1

TP, A T SRR IR 7 5 S RS e 135

1.2 Influence of different decision parameters
Decisions in the lane-change scenario can be
precisely described as lane-keeping or lane-change to
the right/ left lane in fast/ moderate/ mild mode with
acceleration/maintained velocity/ deceleration. The
examples represented with decision parameters are
listed in Tab. 1. Such a description of the decision
can provide more precise and diverse behaviors for

decision-making and be more human-like.

Tab.1 Examples of decision description for lane—

change at parameter representation

Description Y,/m T/s
Lane keeping 0 1
Right lane—change in fast mode —L 3
Right lane—change in mild mode —L 5
Left lane—change in moderate mode L 4

The action ay, 1s not listed, while its value will decide whether to
accelerate, maintain velocity or decelerate.

Then, the influence on the planned trajectory is
shown with different decision parameters through
parallel simulations. In the parallel simulations, the
left lane-change (Y,;=L) is implemented with
changeable decision parameters T and a, at two
which

different trajectory optimization problems as shown in

initial longitudinal velocities v, involves
Eq. (3). These optimization problems are solved by
sequential quadratic programming (SQP) algorithm
using MATLAB.

The trajectories with different action durations
Te{T1, T2, T3},
a,E{ A1, A2, A3}, and initial longitudinal velocities
v, &{ V1, V2} are shown in Fig. 3. Here, the initial
longitudinal velocity V1=10 m/s and V2=20 m/s.
The action duration T1=3s, T2=4 s, and T3=5s.
The expected acceleration A1=—0.5 m/s*, A2=0,
and A3=0.5m/s".

As shown in Fig. 3, there is a certain distance
with  different

expected accelerations

gap between the trajectories
microcosmic decisions, which may cause absolutely
different situations when these microcosmic decisions
are not considered in the decision layer.
1.3 Analysis of range of decision parameters
in NGSIM

Firstly, the parameter-based decisions and the

after optimization are

corresponding  trajectories

! - - —
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5 L.ty /!
I ol
[ o / /
1 Y
e \[2-T 2-A2

YR/ /
/ —V2-T3-A3

b~ 1
0 30 60 90

X/m

V1-T1-A1
= = V1-T2-A2
= = V1-T3-A3
V2-T1-A1

Y/m

Fig.3 Trajectories at different values of decision

parameters

compared with real traffic trajectories from NGSIM
to verify the rationality of parameter-based decision-
making. Three typical examples (C,, C,, C;) are
shown in Fig. 4. The start time step and end time
step of lane-change in each trajectory are recognized
with the method in reference [9], which is set as the
action duration T. The expected acceleration a., with
an interval of 0.1 is calculated to fit the actual
trajectory. The optimized trajectory is compared with
the actual trajectory from NGSIM, in which the
optimized trajectory has a good fitting performance
compared with the actual trajectory. Meanwhile,
action duration T and expected acceleration «,, are
listed in the right side of Fig. 4. It can be seen that
different lane-change maneuvers are executed with
different drivers, which is a potential behavior that
can be considered in the decision layer.

Meanwhile, the ranges of these decisionparameters
are analyzed with this real traffic dataset. The lane-
change trajectories from the NGSIM are selected and
labeled with the method in reference [9]. The statistic
values in the whole data are listed in Tab. 2. The ranges
of expected acceleration and action duration in NGSIM
are used as a reference in the parameter-based decision-
making probleminthenextsection.

1.4 Driving scenarios analysis in NGSIM

In free traffic flow, there are eight potential
surrounding positions around the host vehicle, which
is numbered as shown in Fig. 5. The ranges of
different positions are given in Tab. 3. For each
labeled host vehicle, the vehicle that is in the range of
positions P, — Py will be added into its driving
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Fig.4 Comparison of actual trajectories from
NGSIM (R
trajectory with optimization trajectory

in legend) and optimized

planning controller (C in legend)

Tab.2 Statistic results in NGSIM

Action duration T/ Tow/s T/s
T/s 2.5 7.5 4.5
Expected acceleration o min Qe max Qo
a,/(m/s?) —1.1 2.5 0.2

scenario. The ranges of expected acceleration and
action duration in NGSIM are used as a reference in
the parameter-based decision-making problem in the

next section.

7 @D 6 @D 5 D
Environment vehicles
8 (j‘: - Host vehicle (_i_‘: 4
- 1 -y 2 - 3

Fig.5 Diagram of host vehicle and its surrounding

vehicles

Tab.3 Range of different positions

Position Range Position Range
P, Tu,/s€l0,3] Py, Ps d,/mel15,60]
P,,P; d,/me[—1515]| P,,P;,Py d,/m€&[—15 —60]

d, and Ty,=d,/v, are the distance in the lane direction and
timeheadway between the host vehicle and the surrounding vehicles in
the position 7. v;is the velocity of the host vehicle.

In these driving scenarios, the relative distance
between the host vehicle and the surrounding vehicles
are calculated on its current lane and target lane when
the host vehicle is changing the lane. 15 driving

scenarios that the minimal distance is beyond 4 m are

assumed as a potential emergency driving situation
and can be promoted with a better decision while the
driver’s intention is also fully respected. Thus, the
start time step of lane-change, the action duration for
lane-change, and the average acceleration are
recorded in these driving scenarios. The learning is
done on the driving scenarios to obtain better safety
situations without violating the driver's willingness.
The driver's willingness includes the intention of
changing lane, the action duration, and the average

acceleration of lane-change.

2 MDP modeling and RL algorithm

The RL based parameter lane-change decision-
making problem is established, and the kernel-based
least squares policy iteration algorithm (KLSPI) that
is proposed in reference [16] is applied to learn the
lane-change decision parameters.

2.1 MDP modeling

The decision process for driving is modeled as a
MDP, which contains the design of state space,
action space, and reward function. The trajectory
planning controller changes the state of the host
vehicle with the action selected in the decision layer.

In the design of state, to depict each of the
vehicle in the potential positions P,—Ps, the relative
velocity Av,(k)=wv,(k)—wv,(k), the acceleration
a,(k), the relative distance in the lane direction
d,(k), and the intention of the surrounding vehicles
I,(k) are The

surrounding vehicles I,(%) is calculated using the

considered. intention of the
method from reference [9]. The subscript 7 indicates
the position of surrounding vehicles while the
subscript 4 indicates the host vehicle. Thus, the state
vector can be expressed as:

s(k)=(Av,(k),a (k),d (k),1,(k),

P

cees Avs(k),as(k),ds(k),ls(k) )T

Py

(4

In the parameter-based decision framework, the
decision is described with parameters, which is the
lateral offset, the time of lane-change and expected

acceleration, respectively. The action vector is
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expressed as:

a(k)=(Y, (k), T(k),a.(k))" Q)
where: Y, (k)&{—L,0, L }is the target lateral offset,
L 1s the distance between two neighboring lanes;
T(k)€E[ 3, 6 Jis the time of lane-change or T(£)=11s
the time of lane keeping; a.(%)E[—1,2] is the
expected acceleration.

The reward function is designed with the
consideration of safety r,, the intention of diver r,,
and the consistency with all drivers r,, which can be
expressed as:

r(k)=rkor,(k)+ ko (k)+ kr.(k) (6)

The safety reward r, evaluates the safety
situation compared with the action taken r,, and the
original situation in NGSIM r, ,, which is the driver's
willingness considered in this paper. The safety
reward 7, 1S:

I N

The relative distance d; between the host vehicle
and the surrounding vehicles on its current lane and
target lane when the host vehicle is changing the lane
is calculated during the lane change process.
Assuming there are n, surrounding vehicles, the
incremental equation of action taken r,, and the
original situation in NGSIM r,, are calculated in the
same way and expressed as:

Fowetdi—d, ford,<<d., i=1,2,...,n,
Tooo =70 — 10 ford,<<d., i=1,2,...,n,
else

s efo
Vs elo
(8
where: d,=4 is the emergency distance, d. =2 is
the collision distance. The reward for the intention of
diver r, and the consistency with all drivers . can be
expressed as:
— bk, (T— T,V — k(@ — aw.,) (9
—k (T—T.V —kes(a,—au.) (10D

Here: T, and T, are the time for lane-change with the

r,=

r.—

current driver and the average of all drivers,

respectively;  a,., and a,. are the average
acceleration with the current driver and the average of
all drivers.
2.2 KLSPI algorithm

The reinforcement learning algorithm KILSPI

that is proposed in reference [ 16] is used to solve this

lane-change decision-making problem. The detailed
of this algorithm is not discussed in this paper, only
some changes that can better fit this algorithm to the
problem and give the pseudocode in Algorithm 1 are
explained. The main equations in Algorithm 1 are
from reference [ 16].
Algorithm 1 KILSPI for lane-change decision-
making:
1) Collect sample set
{s(k),alk),r(k),s'(k), k=1,2,...,n}
with random policy and trajectory planning controller.
2) Sparsification: Initialize empty dictionary
Dic=11.
For k=1 ton, do
Assuming that the current dictionary has t
features, for feature m(%) calculate
c=W''w(m(k))
f=wu— w' (m(k))e an

where:
(W, =«k(m(i),m(j)), wp=r(m(k),m(k))
w(m(k))=[e(m(1),m(k)), ....cCm(t),m(k))]"
If £y, do Dic=DicUm(%)
else continue
end if
end for
3) Policy Iteration: Random initialize A, &
Loop for j=1 to maximum iteration 7,
For /=1ton
Compute A, b, a with
A=A+ wim(k)) [ wim(k))—yw(m'(k))]"
b=0b+wlm(k))r(k)
a=(A)"'b
(12
end for
For k=1ton
Implement policy improvement with
x'=argmax,Q(s', a}) (13
end for
Until ZH(aj’ —a- )l .<p.
4) Output a
In KLLSPI, first, all training samples are collected.
Secondly, the sparsification procedure is done to obtain

features in this sample set that are not evident linear
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correlation to form a dictionary for function
approximation, which is calculated withby using Eq.
(11) and decided by using threshold parameter p.
Thirdly, policy iteration is carried outconducted until the
termination threshold p. Thirdly, policy iteration is
carried out until the termination threshold g, is satisfied.
These iteration equations can be directly found in
reference [16]. Finally, the policy is output with the

weight vector aof estimated state-action value function

Q(s, a).
The radial basis function (RBF) network is used
as the function approximation to approximate the state-

action value function, which can be expressed as:
QUs(k),alk)=> ak(m(j),m(k)) (14
=1

Feature representation m(%) is customized,
which combines the state vector s(%) and the action
vector a(£)=[Yr, T, a. ]and can be expressed as:

m(k)=(h(1)s(k),h(2)s(k), h(3)s(k), T, an)"
(15

here h is the activation vector and can be expressed

as:
(1,0,0) for Yy=—L
h=4(0,1,0) for Y;=0 (16)
(0,0,1) for Y=L

The weight vector k4, is manually set to
normalize the feature vector with a different range and
measure state and action differently. The kernel

function can be described as:
 (k(m(k)—m(j)))

K(m(/e),m(j)):e 20° an

3 Simulation results

The driving scenarios in NGSIM are obtained
and divided into the training set, the test set, and the
cross-validation set. Sample sets are generated from
the training set. The learning is implemented as
llustrated in Sections 2 and 3, and influential
parameters are decided. Finally, simulation results in
the test set and the cross-validation set and promoted
performance are verified.

3.1 Sample sets and learning process analysis

In NGSIM, 254 driving scenarios whose host

vehicle execute lane-change are selected and are
randomly divided into the training set, the test set,
and the cross-validation set, which has 214, 30, 10
driving scenarios, respectively. In the training set,
the time step that the host vehicle changes lane is
found and three decision time steps that before and
behind this time step are also considered whose time
interval is 0.2 s. We use tThese time steps rather
than the whole time are used to sample, because the
behavior of other environments could be assumed to
be maintained in this short time interval. Lane-change
or lane-keeping decisions are both simulated in these
decision points to collect sample sets in these training
scenarios. Finally, 10 327 samples are obtained.

In the learning process, the threshold parameter
¢ will be compared with a feature linear correlation
with features in the current dictionary to decides
whether it will be added to the dictionary, which will
be used to approximate the action-state value
function. Thus, the threshold parameter u will
influence the dimension of the dictionary and function
approximation. The dimension of the dictionary is
572, 170, and 91, respectively, when p¢=0.01,
0.06, and 0.11. The average estimated error in the
training set and test set are shown in Fig. 6.
Eventually, = 0.01 is chosen because of its better

performance in both the training set and the test set.

TestS-0.11 |-
TrainS-0.11
- = TestS-0.06
TrainS-0.06
— =TestS-0.01
TrainS-0.01

o]

w
T

Average estimated error

Iteration
The error in each sample is calculated using e,=y Q(s’a")+r-O(s.a)
Fig.6 Average estimated error in the training set

and test set

3.2 Performance validation
First, an emergency scenario whose minimal

distance between the host vehicle and the surrounding
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vehicles in the whole lane-change process is only 2.5
m in the test set is simulated. As the performance
shown in Fig. 7, the control policy after learning
tends to change lane late with acceleration and a faster
mode to obtain a safer driving situation. Thus the
minimal distance in the initial stage is considerable,
and the minimal distance in the whole lane-change
process has increased to 3.7 m, which promotes the
safety performance and retains the driver's intention to
change lane rather than keep the lane. A better-
performing behavior but also acceptable for still
executing the human driver's willingness is realized.

In the cross-validation set, a common scenario is
simulated, and the performance is shown in Fig. 8.
During diving, the control policy after learning
change lane in a shorter time, which maintains the
performance in both safety, velocity control, and
task.  The

performance in the cross-validation set verifies the

finishing  lane-change maintained

generalization performance of the learning results.

20
Lane centerline
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Fig.7 Results for an emergency scenario in

test set

4 Conclusions and future works

Microcosmic behaviors, such as lane-change
time and expected acceleration, in precise decision-
making not only influence trajectory but also differ in
drivers, which are shown in NGSIM but seldom
considered in the decision layer. As emergency
driving scenarios exist in NGSIM, a learning-based
parameter decision-making method for automated

vehicles to learn the precise decision-making has been

10F °
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Fig.8 Results for a common scenario in cross-

validation set

investigated, which can balance safety and human
driving willingness. The lane-change time and
expected acceleration are added to the action space.
Safety, the current driver's willingness, and the
average human driving style are considered in the
After training by KLSPI with

driving scenarios in NGSIM, precise decision-making

reward function.

is realized. Safety performance is promoted in an
emergency lane-change scenario of the test set, which

indicates a better-performing behavior and is

acceptable for still executing the human driver's
willingness. Safety performance is maintained in the
cross-validation set, which verifies its generalization
performance of the learning results.

In the further, other deep reinforcement learning
methods will be explored in more complex and

changeable driving scenarios.
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