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融合码盘和激光雷达的里程计与建图

陈贤钦，陈 慧
（同济大学 汽车学院，上海 201804）

摘要：提出了一种用于自动驾驶汽车的低漂移、低延迟的里

程计与高精度建图的算法。该方法融合了多种传感器的测

量结果，包括车轮编码器、转向盘转角编码器、激光雷达及可

选GPS等的测量结果。里程计算法由车轮里程计和激光里

程计组成：前者基于车辆运动学模型，高频、实时估计位姿增

量，用于点云去畸变和为后者优化位姿提供可用的初值；后

者以较低的频率估计车辆的精确位姿变化，以补偿前者累计

的误差，其核心是一种基于角度度量的两阶段特征提取方

法。建图算法基于因子图，包含激光里程计因子、回环因子

和可选GPS因子，通过增量平滑和建图算法优化全局轨迹，

在线生成全局地图，其中GPS因子能够自动对齐GPS坐标

系和里程计坐标系，逐步融合GPS测量值，解除了算法初始

化过程对于GPS的依赖。所提出的方法在自动驾驶汽车平

台数据集上进行了评估，并和已开源的部分相关工作进行对

比，结果表明它具有更低的漂移率，在本文进行的最大规模

的测试中达到了 0.53%。相关代码以开源形式供交流参考

（https：//github.com/Saki-Chen/W-LOAM）。
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Abstract： This paper， by proposing a wheel-LiDAR
method of odometry and mapping（WLOAM），using wheel
encoder，steering encoder，LiDAR，and optional GPS for
autonomous vehicles，estimates the low-drift pose at real-
time and builds a high-accurate map. The odometry
consists of the wheel odometry algorithm and the LiDAR
odometry algorithm. The former estimates the 3-DOF ego-

motion of LiDAR at a high frequency based on Ackermann

steering geometry，whose resulting pose increment is
applied in point clouds de-skewing and works as a fine
initial guess for LiDAR odometry while the latter performs
the 6-DOF scan-to-map LiDAR pose optimization at a
relatively low frequency to compensate the pose error
accumulated by the wheel odometry，whose core is a two-

stage method with an angle-based metric for extracting
features. The mapping method is based on the factor
graph consisting of the LiDAR odometry factor，the loop
closure factor，and the optional GPS factor，which is
solved via incremental smoothing and mapping（iSAM）to
produce a global map online. An auto-aligned-GPS-factor
is proposed for fusing GPS measurement incrementally
without explicit initialization. The proposed method was
extensively evaluated on the datasets gathered from the
autonomous vehicle platform and compared with related
open-sourced works. The results show a lower drift rate，
which reaches 0.53% in the largest test described in this
paper. The implementation of the proposed method is
open-sourced for communication （https：//github. com/
Saki-Chen/W-LOAM）.

Key words： autonomous vehicles； simultaneous
localization and mapping； LiDAR odometry； wheel

odometer；factor graph optimization；sensor fusion

1 Introduction

Simultaneous Localization and Mapping
（SLAM）has been researched for the last 30 years
but remains a popular topic among the field of
robotics［1］. Recently， the development of
autonomous vehicle brings new sensors， new
scenarios and new challenges for SLAM［2］. One of

文章编号：0253⁃374X（2021）S1-0174-12 DOIDOI：10. 11908/j. issn. 0253-374x. 22721

收稿日期：2021-09-20
第一作者：陈贤钦（1994—），男，硕士研究生，主要研究方向为多传感器融合定位与建图和激光检测。E-mail：1933510@tongji. edu. cn
通信作者：陈慧（1964—），男，教授，博士生导师，工学博士，主要研究方向为汽车底盘电子控制系统技术和智能汽车技术。

E-mail：hui-chen@tongji. edu. cn



第 S1期 陈贤钦，等：融合码盘和激光雷达的里程计与建图

the most important challenge is self-localization，
which is also the basic problem of SLAM，but in a
larger scale with various challenges from the real
world like lighting，weather，GPS signal quality，
etc. As it is difficult to build a SLAM system with
only a single type of sensor handling all these
challenges，fusing method stands out，which takes
advantages of different types of sensors. Reference
［3］ summarizes different sensors and their
combinations like visual inertial method and LiDAR
inertial method，which are among the most popular
SLAM methods， to perform self-localization for
autonomous vehicles. In this paper，wheel encoder，
steering encoder，LiDAR and an optional GPS are
picked out for building SLAM system on car-like
platforms.

It is desirable to design an accurate，robust and
real-time SLAM system with carefully designed
architecture for autonomous vehicles. The LiDAR
odometry and mapping（LOAM）method proposes a
good example of that kind using dual-layer
optimization to achieve high frequency LiDAR
odometry and low frequency LiDAR mapping as well
as correction to odometry［4］. But the frequency of
odometry is limited by the frame rate of LiDAR. The
LiDAR inertial odometry via smoothing and mapping
（LIO-SAM）method fuses inertial measurements to
produce higher output frequency of odometry，which
also serves to de-skew point cloud without a linear
motion assumption compared to LOAM，allowing it
to outperform LOAM especially when sensor moves
or rotates violently［5］. But it works in a tightly-coupled
framework with feed-back between inertial module
and LiDAR odometry module making it fragile when
good features of point cloud are rare. However，LIO-

SAM demonstrates a good practice that LiDAR
odometry is enhanced with another supporting sensor
predicting motion between laser scans at a high
frequency. For autonomous vehicles，wheel encoder
and steering encoder，which are equipped for most
automobiles，are qualified to play this supporter role
with fast and robust wheel odometry taking place of
inertial measurement unit（IMU），despite the fact
that the wheel odometry only estimates 3-DOF

motion and drift quickly when turning［6］.
Feature extraction lies in the core of feature-

based LiDAR odometry method determining the
accuracy， robustness and even computational
efficiency. Reference ［4-5］ and［7］ all follow a
general procedure including classifying points as edge
points or planar points，searching for neighbor points
in corresponding feature map，registering points to
map by minimizing point-to-line or point-to-plane
distance and finally merge points into feature maps.
The feature extraction in this procedure is based on
geometric criterion，which are calculated within a
small piece of laser scan for taking advantage of dense
points along the scanning direction of LiDAR. This
method works well for most planar object like wall or
ground resulting smooth planar feature map， but
suffers from some rough object like bush or grass
producing noisy edge feature map. Thus，most
methods filter out bad edge features according to the
spatial distribution of neighbor points. But，actually，
some of these abandoned features， for example，
feature points of a greensward，can be treated as
planar features after voxel grid filtering because they
look planar within a bigger neighborhood rather than a
small piece of laser scan. This observation inspires an
idea called degenerated features，which are extracted
from edge features but work as a planer feature with
lower weight.

Another important issue for the system is
correction of drift. One possible technique is applying
loop-closure， which is widely used in SLAM.
Reference［5］and［7］implement an iterative-closest-
point-based（ICP）method for loop-closure，but it
would easily fail when the drift goes too big. A
simpler and more practical technique for autonomous
vehicles is fusing GPS measurements to limit the
growing of drift，which also helps to improve the
performance of ICP-based loop-closure. Reference
［5］ adopts both of these techniques with a single
factor graph， which is optimized via iSAM［8-9］

efficiently. However， an extra orientation
measurement is required for alignment of the GPS
coordinate system， which is helpful to improve
accuracy of orientation but redundant for fusing GPS
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measurements. In fact，two coordinate system can be
aligned using only path points measured in each
coordinate system using Umeyama’s algorithm ［10］.
Thus，it is also possible to align a pose graph，which
is treat as a set of path point，to corresponding path
points set of GPS measurements through optimization
method，where the drift of every pose is minimized
concurrently. This idea is implemented as Auto-
Aligned-GPS-factor， which estimates the
transformation from the local coordinate to the GPS
coordinate and correct drift of poses at the same time.

In summary， this paper proposed a SLAM
system consisting of three layers for performing
odometry and mapping online. In the first layer，a
wheel odometry method based on Ackermann
steering geometry is introduced to output high
frequency ego-motion in real time，which serves as a
fine initial guess of accurate pose and is used for point
cloud de-skewing. In the second layer，an improved
two-stage feature-based method with an angle-based
metric is applied to extract edge features，planar
features and degenerated features from point cloud，
which process features respectively in local scan scale
and local map scale for more robust feature
extraction. The features are then parsed to form
constraints to the sensor pose in a scan-to-map
manner for LiDAR odometry optimization. In the
third layer， a graph-based method is applied to
formulate a factor graph optimization problem with
LiDAR odometry，loop closure and optional GPS
measurement，which is solved via iSAM. Here，an
Auto-Aligned-GPS-factor for fusing GPS
measurements without explicit initialization is
proposed for large scale mapping task. With the three-
layer framework，odometry runs with very low delay
in the first layer and the accumulated error is
compensated by the LiDAR odometry optimization in
the second layer. And mapping runs in the third layer
with lower demand of real-time processing. The main
contributions of this paper are summarized as follows：

（1）A robust and real-time front end based on
Ackermann steering geometry for car-like platforms.

（2） An improved two-stage feature-based
method for scan matching：an angle-based metric for

parsing point cloud in first stage，and a principal-
component-analysis-based （PCA） method for
extracting edge features， planar features and
degenerated features in second stage.

（3）Auto-Aligned-GPS-factor.
The following chapters are arranged as follows：

The Method chapter presents an overview of system
firstly and then makes detailed description of each
module. The experiments chapter introduces the
benchmark results of proposed algorithm using datasets
gathered from our autonomous vehicle platform. The
Conclusion chapter reviews main contributions of this
work and prospects the futurework.

2 Method

2. 1 Notations
As a convention in this paper， t

targetTsource

represents the 6-DOF pose of frame source with
respect to frame target at time t. t

source p represents
point p with timestamp t expressed in the frame
source. And the point can be transformed to the frame
target by applying t

targetTsource ∙ t
source p， which

results t
target p.

2. 2 System overview
The proposed algorithm is validated using data

collected from the autonomous vehicle platform
shown in Fig. 1. The steering encoder and wheel
encoder provide 100 Hz output though controller area
network （CAN）. The mounted central LiDAR
provides 10 Hz 16-channel data with a field of view
（FOV） by 360° ×30° ， where the horizontal
resolution is 0. 2° and vertical resolution is 2. 0°. The
RT 3002 provides an optional GPS measurement for
the proposed algorithm and ground truth data for
validation when real-time kinematic （RTK） is
available.

The overall system consists of five modules
illustrated by Fig. 2，which receives point cloud data
directly from LiDAR and reads encoder data and
optional GPS measurement data through CAN. The
system outputs optimized global trajectory and global
point cloud map，which are both aligned to the GPS
coordinate system if GPS measurement is available.
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The output of odometry is in the form of
coordinate transformation tree provided by ROS［11］，
which makes it easy to decouple these modules.
Fig. 3 illustrates the coordinate transformation tree
and modules responsible for updating these
transformations.
2. 3 Wheel odometry

The kinematic model for performing wheel
odometry is derived from Ackermann steering
geometry shown in Fig. 4. Given turning radius R
and velocity vwheel at any single wheel， the linear
velocity v at the center of rear axle is proportional to
vwheel，and the angular velocity w= v∙c，where c
means curvature and c∙R=1. But the wheel encoder
outputs count directly，which is associated with the
rolling distance of wheel. Hence there is no need to

estimate velocity of wheel and compute distance，
which introduce extra timing problem［12］. Instead，v
is replaced by ds，which means small increment of
distance，w is replaced by dθ，which means small
increment of yaw angle，so that ds and dθ can be
computed using Eqs.（1）‒（5）：

ds= dsfl

( )1- Df

2 ∙c
2

+ ( )L∙c 2 （1）

ds= dsfr

( )1+ Df

2 ∙c
2

+ ( )L∙c 2 （2）

ds= dsrl

1- Dr

2 ∙c
（3）

ds= dsrr

1+ Dr

2 ∙c
（4）

dθ=ds∙c （5）

Laser scans

Wheel
odometry

Graph based
mapping

Optimized pose
feature points

Pose guess
De-skewed feature points

LiDAR
odometry

Point
de-skewing

Feature
extraction High frequency

odometry

Global trajectory

Global map

Fig. 2 Overview of WLOAM algorithm

Graph based
mapping

LiDAR
odometry

Wheel
odometry

In Fig. 3, earth means the local coordinate system of GPS
which can be ENU or UTM; map means the coordinate system for
global map and global trajectory whose origin is located at the start
point; local map means the coordinate system for LiDAR
odometry, which drifts slowly as the system travels over a long
distance; odom means the coordinate system for wheel odometry,
which drift fast but has a low delay; base link is attached to the
center of rear axle of vehicle shown by Fig.4;lidar link and gps link

are attached to corresponding sensors. The arrows between circles
are defined as transformations between coordinate systems, where
eTm, mTlm, lmTo and oTbl are estimated by their corresponding
modules while blTll and blTgl are directly calibrated as constant.
Other transformations not shown in Fig. 3 can be derived from
combination like oTll= oTbl ∙ blTll.

Fig.3 Coordinate transformation tree

The steering encoder and wheel encoder for each wheel are the

original parts of the vehicle, which are accessed through CAN. Three

sets of RS-LiDAR-16 produced by Robosense are mounted atop the

vehicle but only the central one is exploited for the proposed

algorithm. An inertial and GPS measurement system, RT 3002, is

mounted at the center of rear axle, which provides precise ground

truth data for validation.

Fig.1 Autonomous vehicle platform and sensors
setup
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where：fl denotes front-left wheel，fr denotes front-
right wheel， rl denotes rear-left wheel， and rr
denotes rear-right wheel.

Assuming that there is no longitudinal slip of
wheel， the dsx，where x= fl，fr，rl，rr， can be
calculated using the increment of count by any wheel
encoder and the average value is used as final ds.

Assuming that there is no lateral slip of wheel，
the curvature c depends on the steering angle，which
can be calculated using Eq.（6）：

c= 1
L
∙ tan steering angle

η
（6）

where η denotes transmission ratio of steering system.
Finally，the 3-DOF pose of the vehicle can be

simply estimated as：
é

ë

ê

ê
êêê
ê

ê

ê ù

û

ú

ú
úú
ú

úxk+1
yk+1
θk+1

=
é

ë

ê

ê
êêê
ê

ê

ê ù

û

ú

ú
úú
ú

úxk
yk
θk
+

é

ë

ê

ê
êêê
ê ù

û

ú

ú
úú
ú

úds∙ cos θk
ds∙ sin θk
dθ

（7）

where：x and y denote the position of the center of
rear axle，and θ denotes the yaw angle of the vehicle.
When converting the 3-DOF pose to 6-DOF
transformation oTbl，the remaining three degrees of
freedom are simply assumed to be zero.

2. 4 Converter
Most LiDAR sensors perform beam steering to

scan the environment［13］，which changes the direction
of beam continuously to obtain a series of distance
measurements. This mechanism is exploited to unify
the format of point cloud produced by different
LiDAR. The points are sorted by the time of
measuring，which requires the point data to provide

timestamp field for every point. Besides，many
LiDAR also provide data field called ring indicating
which scanner producing the point. Thus，timestamp
and ring are required for the proposed algorithm to
recover the scanning sequence of points for each laser
scanner. A sequence is called a scan in this paper.
For example，there are sixteen scans for the RS-

LiDAR-16 while there are six scans for the Livox
Avia produced by DJI Inc. Corp. This conversion
allows the algorithm to adapt different type of LiDAR
as long as timestamp and ring are available.
2. 5 Point cloud de⁃skewing

The motion of LiDAR causes distortion of point
cloud，which should be recovered firstly. Point cloud
is de-skewed point by point using：

t0
ll pk = t0

o T-1
ll ∙ tko Tll ∙ tkll pk （8）

where： tk
ll pk means the kth point in one frame of point

cloud with timestamp tk；tk
o Tll is interpolated from the

transformations estimated by wheel odometry assuming
a linear motion model between updating of wheel
odometry. Compared with LOAM，which assumes
constant angular and linear velocity during one period
of scanning［4］，the proposed method of de-skewing is
more accurate because it exploits motion information
directly measured by encoders. Fig. 5 compares the
original point cloud and the de-skewed one.

2. 6 Feature extraction
Exactly，this module does the first stage work，

This is a simple model for car-like platforms, where R denotes

turning radius, L denotes wheel base, Df denotes front wheel track

and Dr denotes rear wheel track.

Fig. 4 Ackermann steering geometry

Y
/m

X / m

This is sample data for an in-door parking lot. The sensor

platform is turning left at the corner. For clarity, the points on ground

and ceiling is removed. The top-right de-skewed points are slightly

different from the original ones. The reason for this is that the points

are back-propagated to about 0.1 s ago to remove the distortion

caused by the motion of sensor.

Fig.5 De-skewing of point cloud
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which extracts features in local scan scale. The points
are classified by a geometric criterion called corner
angle in Eq.（9），which is calculated using points
within a narrow neighborhood illustrated in Fig. 6.

Firstly，a scan is divided to segments according
to the angle or difference of distance between neighbor
points. Segments with too few points are ignored for
filtering out noisy points. And then the first and last
points of remained segments are label as edge points，
but the occluded points are removed for the reason
described in reference［4］. Finally，points within
segment are classified as edge point or planar point
according to corner angle calculated using Eq.（9），

where edge point is point with corner angle greater
than the threshold，anglecorner，and planar point is
point with corner angle smaller than another
threshold，angleplanar. These two parameters can be
chosen according to experiments. In this paper，they
are simply set to 56°.

corner angle=
1
m

|

|

|
||
|
|
|∑
k=1

m ( )tan-1 rlk- rm
θlk ⋅ rm

+tan-1 rrk- rm
θrk ⋅ rm

|

|

|
||
|
|
|
（9）

Last but not least，the extraction is done using
not-de-skewed point cloud，because the corner angle
is calculated using neighbor points obtained within a
very short duration of time，where the sensor can be
treated as still，while the process of de-skewing may
introduce extra noise to these local points resulting a
worse quality of feature extraction.

2. 7 LiDAR odometry
LiDAR odometry is performed in a scan-to-map
manner which is widely used in previous work［4-5，7，14］.

As shown by Fig. 7，the incoming laser frame is
registered to the local map and then merged to it. To

limit the scale of local map，it is arranged in local map
segment，which is created by merging all registered
feature points gathered along a fixed-length trajectory
into two voxel maps，Medge and Mplanar，which is
corresponding to two types of feature points pedge and
pplaner described in chapter 2. 6. Similar to reference
［5］， the local map is then built using a sliding
window approach with several latest local map
segments.

With local map，the point cloud registration is to
minimize the registration error by optimizing the pose
of incoming frame lmTll using Eq.（10），which can be
solved by Levenberg-Marquardt algorithm［15］：

lmT̂ll=arg min
lmTll (∑ dedge

Σedge
+∑ dplanar

Σplanar)
（10）

where： ∙
Σ
means Mahalanobis distance parameter⁃

ized by covariance matrix Σ，and
dedge= ( lmTll ∙pedge- c)× n （11）

dplanar= ( lmTll ∙pplaner- c)× n （12）
where： dedge denotes point-to-line distance； dplanar
denotes point-to-plane distance；c denotes the center
of feature；n denotes the direction vector of feature，
which indicates the direction of an edge line or the
direction orthogonal to a plane.

For nonlinear optimization，the initial guess of
lmTll is given by

lmTll= lmTo ∙ oTll （13）
where：oTll is given by wheel odometry；lmTo is the
most important state maintained by this module，
which estimates the accumulated pose error of wheel
odometry. It is updated using optimized LiDAR pose
lmT̂ll as following：

lmTll= lmT̂ll ∙ oT-1
ll （14）

In summary，the optimization part of LiDAR
odometry algorithm is just an iteration using Eq.（10）
and Eq.（14）along with updating local map shown by
Fig. 7.

An important detail is the second stage of feature
extraction in local map scale. The resulting features
are parameterized by a triplet { c，n，Σ }，which is
calculated with several nearest neighbor points using
PCA algorithm. PCA is also adopted by previous

Fig.6 Extracting corner angle from laser
measurements
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works for extracting vector n，among which reference
［16］researches it in detail. But in fact，the sample
covariance given by PCA is useful for weighting
importance of every single feature in optimization.
Assuming eigen values { λ1，λ2，λ3 } and eigen vectors
{ n1，n2，n3 } are extracted from m points using PCA，

where λ1< λ2< λ3，and c is the average position of
these points， the feature is planar feature
parameterized as：

{ c，n1，Σplanar } （15）

where Σplanar=max ( λ1
m-1，σ

2
prior) （16）

if λ1
m-1 < σplanar （17）

and 3 λ2
m-1 >Δplanar （18）

where： σprior denotes the noise of LiDAR
measurement； σplanar denotes threshold for planar
feature；Δplanar denotes the single cell size of local
voxel mapMplanar.

Eq.（17）and Eq.（18）sets criteria for filtering
out planar feature with requirements to the
distribution of neighbor points. Eq. 16 estimates the
uncertainty of feature directly from points data. And
similarly，the feature is edge feature parameterized as：

{ c，n3，Σedge } （19）

where Σedge=max ( λ1+ λ2m-1，σ 2prior) （20）

if λ1+ λ2
m-1 < σedge

（21）

But in fact，edge feature is not as stable as planar
feature due to noisy points in the real data，which
may be points of vegetation. Thus，before classified
as an edge feature， the feature must not be a
degenerated feature. The feature is degenerated
feature parameterized as：

{ c，n1，Σde }
where Σde=max (σ 2planar+ λ1，σ 2prior) （22）

If it meets Eq.（17），and

3 λ2
m-1 >Δedge （23）

where Δedge denotes the single cell size of local voxel
mapMedge.

The form of degenerated feature is very similar
to planar feature but with punishment of uncertainty in
Eq.（22）for reducing its weight for optimization. It
does not matter to discard this kind of feature in most
time，but it helps when the environment is too noisy
to extract other types of feature. If the degenerated
feature is exploited，Eq.（10）is rewritten as：

lmT̂ll=arg min
lmTll (∑ dedge

Σedge
+

∑ dplanar
Σplanar
+∑ dde

Σde)
（24）

where dde is point-to-plane distance analogous to
Eq.（12）.
2. 8 Graph based mapping

Although LiDAR odometry is much more
accurate than wheel odometry，it suffers from drift
after travelling a long distance because of the nature
of odometry， which accumulates error. Extra
measurements are required for eliminating drift for
creating global map with internal consistency. Loop
closure is a solution for the trajectory with loop. And
fusing GPS measurements is another practical way
when the GPS signal is available. Both approaches
are integrated to correct drift using a unified factor
graph［17］ illustrated by Fig. 8. It is solved
incrementally via iSAM［8-9］ algorithm with the open-
sourced implementation GTSAM［18］，which makes
the mapping module able to run online efficiently.

The global map is arranged as a series of poses
associated with submap generated from registered
frames，which is a kind of topological map［19］. To
reduce the scale of the graph，new pose is added
every five meters assuming the drift of LiDAR
odometry is small within a short distance. Four types
of factor are introduced for optimizing the poses as
shown by Fig. 7. Prior factor just set the coordinate
origin to the start point of the trajectory. LiDAR

Incoming
frame

Local map

Pose registration
Local map
segment

Sliding forward

Fig.7 Sliding window updating strategy for local map
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odometry factor and loop closure factor are
implemented as described in reference ［5］. The
detail of them is omitted for the sake of brevity.

For fusing GPS measurement， an unknown
transformation gpsTmap is assumed，which transforms
point from mapping coordinate to GPS coordinate.
The GPS factor evaluates the difference between
GPS measurement and its prediction using gpsTmap and
the poses of submap as：

f (Tk，gpsTmap)=
 translation ( )gpsTmap ∙Tk - tgps

Σgps

（25）

where：Tk is the pose of submap； tgps is GPS
measurement expressed in cartesian coordinate like
ENU system；Σgps is covariance matrix expressing the
uncertainty of GPS measurement. The graph
structure for GPS factor is similar to that in reference
［20］but specialized for GPS measurement.

The GPS factor requires no extra process to
transform GPS measurements to the local， but
estimates the transformation automatically as well as
correcting the drift in a unified optimization process，
which simplifies the GPS fusion and is compatible to
iSAM for it can fuse GPS measurement
incrementally. This makes the system robust to the
GPS signal quality，because it only requires a few
GPS measurements to correct pose instead of
continuous GPS measurements. Once GPS fails，the
measurement is just dropped out till the signal
recovers. The system may drift during the GPS-

denied time，but the error can be corrected when
GPS is available or a loop closure is detected. Only
one limit is that it requires at least three GPS factors
to form a closed constraint（see Fig. 8）.

3 Experiments

The proposed algorithm is tested on the laptop
with i5-8265U CPU under Ubuntu 18. 04. Tab. 1
shows the working frequency of each module.
Because wheel odometry is triggered by the wheel
encoder，its frequency is proportional to the vehicle
speed and limited by the updating rate of encoder.
The feature extraction，point de-skewing and LiDAR

Odometry process 10 Hz point cloud data in one
pipeline and drop out data when system is busy with
no harm to performance. The graph based mapping
record map data in a low frequency in most time and
optimizes the global map only when loop closure is
detected or GPS is available. The workload is well
balanced to meet a real-time performance of odometry
and online processing of global mapping. When the
GPS signal is available，the local map is well located
in the GPS coordinate system.

For further evaluation of the performance of
accuracy， the proposed method was compared to
several previous works using their open-sourced
implementation，which are listed in Tab. 2. And
three datasets were collected from the autonomous
vehicle platform for benchmark，which are listed in
Tab. 3. For the sensor configuration of LIO-SAM，

the IMU and GPS is both provided by RT 3002，
which is an inertial and navigation system produced
by OxTS company. As GPS is used as an optional
correction both for LIO-SAM and proposed method，
it is filtered by signal quality and is assumed a noise
with 1 m standard deviation for both methods.

The accuracy of trajectory was evaluated by
comparing it with the ground truth trajectory obtained

Pose GPS
transform

Prior
factor

LiDAR
odometry

factor

Loop
closure
factor

GPS
factor

Factors are visualized as lines with different markers. Estimated

variables are visualized as circle with variable names.

Fig.8 Factor graph for fusing measurements

Tab.1 System update frequency

Modules
Wheel odometry

Feature extraction and point de⁃skewing
LiDAR odometry
Graph based mapping

Frequency/Hz
10‒50
10
8‒10
1
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from RT 3002，which was expected to be of high
accuracy with 2 cm standard deviation in the RTK
mode. But due to the signal quality，the accuracy
would degenerate occasionally and the device would
indicate no RTK mode available. Thus，only the data
in RTK mode was exploited. Noting that the GPS
measurement is of worse accuracy in altitude，the
accuracy is also evaluated by projecting trajectory to
ground plane and calculating horizontal position error.

Absolute pose error（APE） and relative pose
error（RPE）are widely used for evaluating precision
of SLAM algorithm［21］. For the APE，the trajectory
was firstly aligned to ground truth trajectory using
Umeyama's algorithm， and then calculating APE
using Eq.（26）and APE 2D using Eq.（27）：

average (APE1：m)= 1
m∑i=1

m  trans ( )Q-1
i S Pi （26）

average (APE 2D1：m)=
1
m∑i=1

m 

 


trans ( )Qi

-1
S Pi

（27）

where：Qi denotes the ground truth pose；Pi denotes
the estimated pose；S denotes transformation for
aligning trajectory； trans (∙) means extracting
translation part of a pose； ∙ means extracting 2D
pose from 3D pose by projection.

For calculating the RPE，a pair of poses Δ
meters apart along the trajectory are selected from
ground truth trajectory and estimated trajectory
respectively. And it is calculated using Eq.（28）：
average (RPEΔ1：m)=

1
m∑i=1

m 

 


trans ( )( )Q-1

i Qi+Δ
-1
P-1i Pi+Δ

（28）

The drift rate with respect to trajectory length Δ
is defined as：

driftΔ=
average ( )RPEΔ1：m

Δ
×100% （29）

Just as described in reference［22］，a series of
trajectory length Δi are selected and further an overall
RPE is obtained using Eq.（30）and an overall drift
rate is obtained using Eq.（31）：

RPEoverall=
1
∑i
mi
∑i
mi ∙ average ( )RPEΔi1：mi（30）

driftoverall=
1
∑i
mi
∑i
mi ∙ driftΔi （31）

Fig. 9 shows the odometry trajectory without the
correction of loop closure and GPS measurement.
LeGO-LOAM and LIO-SAM suffer from more z-
directional drift than the proposed method. Tab. 4
shows the overall drift rate in the pure odometry
mode for each method. Note that A-LOAM is
dropped out for this comparison for it is possible for it
to performance loop closure in an implicit way and it
is not possible to turn it off.

Fig. 10 shows the estimated trajectories in
comparison with the ground truth. Most trajectories
match the ground truth well except for A-LOAM and
LeGO-LOAM. A-LOAM deviates significantly from
the ground truth trajectory in Fig. 10a and Fig. 10b
for its implicit method failed to perform loop closure.
LeGO-LOAM fails to detect loop closure in
Fig. 10a. This indicates that the accuracy can be

Tab.2 Sensor configuration and loop closure
of compared SLAM Algorithms

Algorithm
A-LOAM［4］

LeGO-LOAM［7］

LIO-SAM［5］

Proposed WLOAM

Sensors configuration
LiDAR
LiDAR

IMU+LiDAR+optional GPS
Wheel+LiDAR+optional GPS

Loop closure
No
Yes
Yes
Yes

Tab.3 Details of datasets

Dataset

Single Loop
West Campus
South campus

Trajectory
length/m
2 883
2 276
8 088

Environment

Building and vegetation
Almost building

Building and vegetation

Average
speed/（km/h）

14. 8
13. 3
15. 8

X / m

Z
/m

Y / m

In pure odometry mode, the drift in the z direction is

significant for LeGO-LOAM and LIO-SAM.

Fig.9 Comparison of odometry

Tab.4 Drift rate of odometry

mode
LeGO-LOAM
LIO-SAM
WLAOM

drift/%
2. 79
0. 99
0. 76
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greatly improved if loop closure is performed
successfully. Otherwise the accuracy is undermined
by the drift. For dataset South Campus shown in
Fig. 10c，only methods with GPS succeed and is
plotted on the figure while other methods accumulate
too much error and fail to find loop closure. This
indicates that the combination of odometry and loop
closure works well only when the loop is not too
long，because the loop closure method is position-
based in this paper，where too large position error
leads to failure. But fusing GPS deals with this
problem by limiting the drift.

Fig. 11 shows the drift rate in different trajectory
lengths， where the proposed method with GPS
outperforms others and has a similar performance
with LIO-SAM if GPS is removed. Tab. 5 shows the
absolute accuracy by APE or APE 2D and relative
accuracy by overall drift rate，where the best and
second best is shown in bold character. Note that the
APE 2D is much smaller than APE when the GPS is
removed but the difference gets small when GPS is
fused. This is because the accuracy of altitude
measurement by GPS is relatively low due to the
nature of GPS measurements，which makes up the
majority of difference between estimated trajectory
and ground truth. However，when GPS is fused，the
estimated trajectory is forcedly aligned to the GPS
measurements eliminating the difference.

Fig. 12 shows the mapping result of South
Campus dataset using proposed method. GPS
correction is fused so that the point cloud map is
automatically aligned to the satellite map using the
estimated transformation from the local coordinate to
the GPS coordinate.

4 Conclusions

This paper proposeds a SLAM system
WLAOM exploiting different sensors for real-time
odometry and online mapping. An improved feature-
based LiDAR odometry method is enhanced by a
kinetic-model-based wheel odometry method to
produce low-drift pose estimation with low delay. A
graph-based method is introduced for fusing loop
closure and GPS measurement，where an Auto-
Aaligned-GPS factor is modeled to correct pose and
estimate alignment parameters. This makes it
possible for the system to map a broad area covering
several kilometers even when the GPS signal is not
always available. But GPS measurement contains
more uncertainty in altitude，which is ignored now
and may cause bad estimation of roll and pitch when
the signal quality is poor. Thus，a future work is to
fuse the information about the roll and pitch angle. It
may come from inertial measurement which contains
information about the gravity. In addition，because

x / m

y
/m A-LOAM

LeGO-LOAM
LIO-SAM w/o GPS
LIO-SAM with GPS
WLOAM w/o GPS
WLOAM with GPS
GPS-RTK

a Single loop

x / m

y
/m

A-LOAM
LeGO-LOAM
LIO-SAM w/o GPS
LIO-SAM with GPS
WLOAM w/o GPS
WLOAM with GPS
GPS-RTK

b West campus

x / m

y
/m

LIO-SAM with GPS
WLOAM with GPS
GPS-RTK

c South campus

The GPS-RTK is not always available due to the signal quality,

thus the trajectory is the disconnected line segments in Fig. 10. Most

trajectories match the GPS-RTK trajectory well excepting the A-

LOAM and LeGO-LOAM.

Fig. 10 Comparison of trajectories
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the system is well de-coupled as separated modules，
it is possible to transplant the system to other
platforms like drone by only replacing the Wheel
Oodometry module with the inertial system. And
Moreover，as described in chapter 2. 4，a general
LiDAR data format requirement makes the system
compatible with different type of LiDAR，but the

evaluation work is left for the future.
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