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Abstract:
method of odometry and mapping (WLOAM) , using wheel

This paper, by proposing a wheel-LiDAR

encoder, steering encoder, LiDAR, and optional GPS for
autonomous vehicles, estimates the low-drift pose at real-
time and builds a high-accurate map. The odometry
consists of the wheel odometry algorithm and the LiDAR
odometry algorithm. The former estimates the 3-DOF ego-
motion of LiDAR at a high frequency based on Ackermann
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steering geometry, whose resulting pose increment is
applied in point clouds de-skewing and works as a fine
initial guess for LIDAR odometry while the latter performs
the 6-DOF scan-to-map LiDAR pose optimization at a
relatively low frequency to compensate the pose error
accumulated by the wheel odometry, whose core is a two-
stage method with an angle-based metric for extracting
features. The mapping method is based on the factor
graph consisting of the LIDAR odometry factor, the loop
closure factor, and the optional GPS factor, which is
solved via incremental smoothing and mapping (iSAM) to
produce a global map online. An auto-aligned-GPS-factor
is proposed for fusing GPS measurement incrementally
without explicit initialization. The proposed method was
extensively evaluated on the datasets gathered from the
autonomous vehicle platform and compared with related
open-sourced works. The results show a lower drift rate,
which reaches 0.53% in the largest test described in this
paper. The implementation of the proposed method is
open-sourced for communication (https://github. com/
Saki-Chen/W-LOAM).

autonomous vehicles; simultaneous

LiDAR odometry;

Key words:
localization and mapping; wheel
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1 Introduction

Simultaneous  Localization —and  Mapping
(SLAM) has been researched for the last 30 years
but remains a popular topic among the field of

robotics.  Recently,  the development  of

autonomous vehicle brings new sensors, new

scenarios and new challenges for SLAM™. One of
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the most important challenge is self-localization,
which is also the basic problem of SLLAM, but in a
larger scale with various challenges from the real
world like lighting, weather, GPS signal quality,
etc. As it is difficult to build a SLAM system with
only a single type of sensor handling all these
challenges, fusing method stands out, which takes
advantages of different types of sensors. Reference
different their

combinations like visual mertial method and LiDAR

[3]  summarizes sensors  and
inertial method, which are among the most popular
SLLAM methods, to perform self-localization for
autonomous vehicles. In this paper, wheel encoder,
steering encoder, LLIDAR and an optional GPS are
picked out for building SLAM system on car-like
platforms.

It is desirable to design an accurate, robust and
real-time SLAM system with carefully designed
The LiDAR
odometry and mapping (LOAM) method proposes a
that  kind
optimization to achieve high frequency LiDAR

architecture for autonomous vehicles.

good example of using  dual-layer
odometry and low frequency LiDAR mapping as well
as correction to odometry. But the frequency of
odometry is limited by the frame rate of LIDAR. The
LiDAR inertial odometry via smoothing and mapping
(LIO-SAM) method fuses inertial measurements to
produce higher output frequency of odometry, which
also serves to de-skew point cloud without a linear
motion assumption compared to LOAM, allowing it
to outperform LOAM especially when sensor moves
or rotates violently”. But it works in a tightly-coupled
framework with feed-back between inertial module
and LiIDAR odometry module making it fragile when
good features of point cloud are rare. However, LIO-
SAM demonstrates a good practice that LiDAR
odometry is enhanced with another supporting sensor
predicting motion between laser scans at a high
frequency. For autonomous vehicles, wheel encoder
and steering encoder, which are equipped for most
automobiles, are qualified to play this supporter role
with fast and robust wheel odometry taking place of
inertial measurement unit (IMU) , despite the fact

that the wheel odometry only estimates 3-DOF

motion and drift quickly when turning™®.

Feature extraction lies in the core of feature-
based LLIDAR odometry method determining the
accuracy, robustness and even computational
efficiency. Reference [4-5] and [7] all follow a
general procedure including classifying points as edge
points or planar points, searching for neighbor points
in corresponding feature map, registering points to
map by minimizing point-to-line or point-to-plane
distance and finally merge points into feature maps.
The feature extraction in this procedure is based on
geometric criterion, which are calculated within a
small piece of laser scan for taking advantage of dense
points along the scanning direction of LiDAR. This
method works well for most planar object like wall or
ground resulting smooth planar feature map, but
suffers from some rough object like bush or grass
producing noisy edge feature map. Thus, most
methods filter out bad edge features according to the
spatial distribution of neighbor points. But, actually,
some of these abandoned features, for example,
feature points of a greensward, can be treated as
planar features after voxel grid filtering because they
look planar within a bigger neighborhood rather than a
small piece of laser scan. This observation inspires an
idea called degenerated features, which are extracted
from edge features but work as a planer feature with
lower weight.

Another mportant issue for the system 1s
correction of drift. One possible technique is applying
which is widely used in SLAM.

Reference [5] and [ 7] implement an iterative-closest-

loop-closure,

point-based (ICP) method for loop-closure, but it
would easily fail when the drift goes too big. A
simpler and more practical technique for autonomous
vehicles is fusing GPS measurements to limit the
growing of drift, which also helps to improve the
performance of ICP-based loop-closure. Reference
[5] adopts both of these techniques with a single
factor graph, which is optimized via iSAM™”
efficiently.  However, an extra  orientation
measurement is required for alignment of the GPS
coordinate system, which is helpful to improve

accuracy of orientation but redundant for fusing GPS



176 [l o K 2 2 MCH 9K BE 2% O

%49 %

measurements. In fact, two coordinate system can be
aligned using only path points measured in each
coordinate system using Umeyama’ s algorithm "'
Thus, it is also possible to align a pose graph, which
is treat as a set of path point, to corresponding path
points set of GPS measurements through optimization
method, where the drift of every pose is minimized
concurrently. This idea is implemented as Auto-
Aligned-GPS-factor, which

transformation from the local coordinate to the GPS

estimates the

coordinate and correct drift of poses at the same time.
In summary, this paper proposed a SLAM
system consisting of three layers for performing
odometry and mapping online. In the first layer, a
wheel odometry method based on Ackermann
steering geometry is introduced to output high
frequency ego-motion in real time, which serves as a
fine initial guess of accurate pose and is used for point
cloud de-skewing. In the second layer, an improved
two-stage feature-based method with an angle-based
metric is applied to extract edge features, planar
features and degenerated features from point cloud,
which process features respectively in local scan scale
and local map scale for more robust feature
extraction. The features are then parsed to form
constraints to the sensor pose in a scan-to-map
manner for LIDAR odometry optimization. In the
third layer, a graph-based method is applied to
formulate a factor graph optimization problem with
LIDAR odometry, loop closure and optional GPS
measurement, which is solved via iISAM. Here, an
Auto-Aligned-GPS-factor for GPS

without mitialization  1s

fusing
measurements explicit
proposed for large scale mapping task. With the three-
layer framework, odometry runs with very low delay
in the first layer and the accumulated error is
compensated by the LIDAR odometry optimization in
the second layer. And mapping runs in the third layer
with lower demand of real-time processing. The main
contributions of this paper are summarized as follows :
(1) A robust and real-time front end based on
Ackermann steering geometry for car-like platforms.
(2) An

method for scan matching: an angle-based metric for

improved two-stage feature-based

parsing point cloud in first stage, and a principal-
(PCA)

planar

component-analysis-based method  for

extracting edge features, features and
degenerated features in second stage.

(3) Auto-Aligned-GPS-factor.

The following chapters are arranged as follows:
The Method chapter presents an overview of system
firstly and then makes detailed description of each
module. The experiments chapter introduces the
benchmark results of proposed algorithm using datasets
gathered from our autonomous vehicle platform. The
Conclusion chapter reviews main contributions of this

work and prospects the future work.

2 Method

2.1 Notations
As a convention imn this

paper, g Louree
represents the 6-DOF pose of frame source with
respect to frame target at time ¢. . p represents
point p with timestamp ¢ expressed in the frame
source. And the point can be transformed to the frame
target by  applying el Towee® sowee’ s Which
results i p-
2.2 System overview

The proposed algorithm is validated using data
collected from the autonomous vehicle platform
shown in Fig. 1. The steering encoder and wheel
encoder provide 100 Hz output though controller area
network (CAN). The mounted central LiDAR
provides 10 Hz 16-channel data with a field of view
(FOV) by 360° X30° ,

resolution is 0. 2° and vertical resolution is 2. 0°. The

where the horizontal
RT 3002 provides an optional GPS measurement for
the proposed algorithm and ground truth data for
validation when real-time kinematic (RTK) is
available.

The overall system consists of five modules
illustrated by Fig. 2, which receives point cloud data
directly from LiDAR and reads encoder data and
optional GPS measurement data through CAN. The
system outputs optimized global trajectory and global
point cloud map, which are both aligned to the GPS

coordinate system if GPS measurement is available.
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+——— Wheel encoder

The steering encoder and wheel encoder for each wheel are the
original parts of the vehicle, which are accessed through CAN. Three
sets of RS-LiDAR-16 produced by Robosense are mounted atop the
vehicle but only the central one is exploited for the proposed
algorithm. An inertial and GPS measurement system, RT 3002, is
mounted at the center of rear axle, which provides precise ground
truth data for validation.

Fig.1 Autonomous vehicle platform and sensors

Feature

setup
extraction High frequency

/Poinl('lund Laser scans
Converter
odometry -
Encoders Odometry Point
odometry de-skewing
~—

Global trajectory

Pose guess
De-skewed feature points

Optimized pose /.
Graph based
mapping

feature points LIDAR
Fig. 2 Overview of WLOAM algorithm

Optional GPS Global map

.

odometry

——

The output of odometry is in the form of
coordinate transformation tree provided by ROS™',
which makes it easy to decouple these modules.
Fig. 3 illustrates the coordinate transformation tree
and modules responsible for updating these
transformations.

2.3 Wheel odometry

The kinematic model for performing wheel
odometry is derived from Ackermann steering
geometry shown in Fig. 4. Given turning radius R
and velocity v, at any single wheel, the linear
velocity v at the center of rear axle is proportional to
Uwnet» and the angular velocity w=1wv-, where ¢
means curvature and ¢:R =1. But the wheel encoder
outputs count directly, which is associated with the

rolling distance of wheel. Hence there is no need to

LiDAR
odometry

Wheel
odometry

In Fig. 3, earth means the local coordinate system of GPS
which can be ENU or UTM; map means the coordinate system for
global map and global trajectory whose origin is located at the start
point; local map means the coordinate system for LiDAR
odometry, which drifts slowly as the system travels over a long
distance; odom means the coordinate system for wheel odometry,
which drift fast but has a low delay; base link is attached to the
center of rear axle of vehicle shown by Fig.4;lidar link and gps link
are attached to corresponding sensors. The arrows between circles
are defined as transformations between coordinate systems, where
T wTiw mT, and T, are estimated by their corresponding
modules while ,, T, and ,, T, are directly calibrated as constant.
Other transformations not shown in Fig. 3 can be derived from
combination like , Ty= , T, Ty

Fig.3 Coordinate transformation tree

estimate velocity of wheel and compute distance,

120 Instead, v

which introduce extra timing problem
is replaced by ds, which means small increment of
distance, w is replaced by d¢, which means small
increment of yaw angle, so that ds and df can be

computed using Egs. (1)—(5):

ds= dsy
: (D
(1 _ 5 -c) +(Lc)’
2
ds= dsy
2 ‘ @)
(1+I§’ -c) +(Lec)’
o dS,./
= D (3
5
ds
ds=—"—
D 4)
1+ 2r-c (
dd=ds-c (5
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where: f/ denotes front-left wheel, fr denotes front-
right wheel, 7/ denotes rear-left wheel, and
denotes rear-right wheel.

Assuming that there is no longitudinal slip of
wheel, the ds,, where x=/l, fr, rl, 1, can be
calculated using the increment of count by any wheel
encoder and the average value is used as final ds.

Assuming that there is no lateral slip of wheel,
the curvature ¢ depends on the steering angle, which
can be calculated using Eq. (6):

_ % tan steering angle
where 7 denotes transmission ratio of steering system.

Finally, the 3-DOF pose of the vehicle can be

simply estimated as:

(6)

¢

Lt 1 L ds+cos 4,
Nev1 |=—| Ve -+ ds-sin 0, (7)
Ori1 0, dg

where: 2 and y denote the position of the center of
rear axle, and ¢ denotes the yaw angle of the vehicle.
When converting the 3-DOF pose to 6-DOF
transformation , T, the remaining three degrees of

freedom are simply assumed to be zero.

,,,,,,,,,,,,,,,

This is a simple model for car-like platforms, where R denotes
turning radius, L denotes wheel base, DD, denotes front wheel track
and D, denotes rear wheel track.

Fig. 4 Ackermann steering geometry

2.4 Converter

Most LiDAR sensors perform beam steering to
scan the environment'"*', which changes the direction
of beam continuously to obtain a series of distance
measurements. This mechanism is exploited to unify
the format of point cloud produced by different
LiDAR. The points are sorted by the time of

measuring, which requires the point data to provide

timestamp field for every point. Besides, many
LiDAR also provide data field called ring indicating
which scanner producing the point. Thus, timestamp
and ring are required for the proposed algorithm to
recover the scanning sequence of points for each laser
scanner. A sequence is called a scan in this paper.
For example, there are sixteen scans for the RS-
LiDAR-16 while there are six scans for the Livox
Avia produced by DJI Inc. Corp. This conversion
allows the algorithm to adapt different type of LiDAR
as long as timestamp and ring are available.
2.5 Point cloud de-skewing

The motion of LiDAR causes distortion of point
cloud, which should be recovered firstly. Point cloud
1s de-skewed point by point using:

4P :J‘)T//ﬂ‘fT//'//[kPk (8)

where: ;' p, means the 4th point in one frame of point
cloud with timestamp 7,5 ,“T}, is interpolated from the
transformations estimated by wheel odometry assuming
a linear motion model between updating of wheel
odometry. Compared with LOAM, which assumes
constant angular and linear velocity during one period
of scanning'*', the proposed method of de-skewing is
more accurate because it exploits motion information
directly measured by encoders. Fig. 5 compares the

original point cloud and the de-skewed one.

30

" original — N\
25 F de-skewed . ’ | z
= - —
20 = T * - -‘I
El } P e P | 1
15+ — Y] \ 4
f o “ 1
r
£ 10 = J Y 4
S ' fed 2+
5t l .IJ JJ 4 |
4
or . s * . S 7
[y 1
S ; \ i} s | ] = | e §
2 N B
10} bt g, 1T |
15 ) . . ) ) .
-60 -50 -40 -30 -20 -10 [ 10

X/m
This is sample data for an in-door parking lot. The sensor
platform is turning left at the corner. For clarity, the points on ground
and ceiling is removed. The top-right de-skewed points are slightly
different from the original ones. The reason for this is that the points
are back-propagated to about 0.1 s ago to remove the distortion
caused by the motion of sensor.

Fig.5 De-skewing of point cloud

2.6 Feature extraction
Exactly, this module does the first stage work,
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which extracts features in local scan scale. The points
are classified by a geometric criterion called corner
angle in Eq. (9) , which is calculated using points
within a narrow neighborhood illustrated in Fig. 6.

Firstly, a scan is divided to segments according
to the angle or difference of distance between neighbor
points. Segments with too few points are ignored for
filtering out noisy points. And then the first and last
points of remained segments are label as edge points,
but the occluded points are removed for the reason
described in reference [4]. Finally, points within
segment are classified as edge point or planar point
according to corner angle calculated using Eq. (9)
where edge point is point with corner angle greater
than the threshold, angle,,.., and planar point is
point with corner angle smaller than another
threshold, angle,,... These two parameters can be
chosen according to experiments. In this paper, they
are simply set to 56°.

corner angle =

m

- . ”[k_rm . rrk_rm
E(tam '——— 4 tan lﬁr)‘ €D

r=1 (9[ T

Last but not least, the extraction is done using
not-de-skewed point cloud, because the corner angle
is calculated using neighbor points obtained within a
very short duration of time, where the sensor can be
treated as still, while the process of de-skewing may
introduce extra noise to these local points resulting a

worse quality of feature extraction.

Fig.6 Extracting corner angle from laser

measurements

2.7 LiDAR odometry

LIDAR odometry is performed in a scan-to-map
manner which is widely used in previous work" ",
As shown by Fig. 7, the incoming laser frame is

registered to the local map and then merged to it. To

limit the scale of local map, it is arranged in local map
segment, which is created by merging all registered
feature points gathered along a fixed-length trajectory
into two voxel maps, M., and M., which is
corresponding to two types of feature points p... and
Dy described in chapter 2. 6. Similar to reference
[5] , the local map is then built using a sliding
window approach with several latest local map
segments.

With local map, the point cloud registration is to
minimize the registration error by optimizing the pose

of incoming frame ,, T, using Eq. (10), which can be

)
(10)

where: || means Mahalanobis distance parameter-

solved by Levenberg-Marquardt algorithm'"';

Im T/l - arg m;n (Z H dtdgt’ < + 2 H dp[mmr
wlu Sedge

ized by covariance matrix ¥, and

dz'dg(l - (//71 T[[.p(/(/g(' _ C) >< n ( 11 )
d[)/unar - (/m T/l'pp/arm‘ T C) X n ( 12)
where: d,.denotes point-to-line distance;

denotes point-to-plane distance; ¢ denotes the center
of feature; n denotes the direction vector of feature,
which indicates the direction of an edge line or the
direction orthogonal to a plane.

For nonlinear optimization, the initial guess of
m Ly 18 given by

m L= T Ty (13)
where: , T, 1s given by wheel odometry; ,, T, is the
most important state maintained by this module,
which estimates the accumulated pose error of wheel
odometry. It is updated using optimized LLIDAR pose
i fz, as following :

m L= m ,f//' JTu'! (14)

In summary, the optimization part of LiDAR
odometry algorithm is just an iteration using Eq. (10)
and Eq. (14) along with updating local map shown by
Fig. 7.

An important detail is the second stage of feature
extraction in local map scale. The resulting features
are parameterized by a triplet {c,n,3}, which is
calculated with several nearest neighbor points using

PCA algorithm. PCA is also adopted by previous
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Local map h >, = max Gzaw 4+, Uzm (22)
-l ﬁ mPOSe registration where . ( P b Op )

...................... If it meets Eq. (17), and

A ;

G e 3 1 = A e (23)
m—

I

Sliding forward

Fig.7 Sliding window updating strategy for local map

works for extracting vector n, among which reference
[16] researches it in detail. But in fact, the sample
covariance given by PCA is useful for weighting
importance of every single feature in optimization.
Assuming eigen values {4, 4., A5} and eigen vectors
{n,,n,,n4} are extracted from m points using PCA,

where A, <CA,<CA;, and c¢ is the average position of

these points, the feature is planar feature
parameterized as:

{ C, 1y, Zp[mlur} ( 15)

A
Where Eplzmur — max ( ) _1 1 ) Up2r1'111') (16>
) A
lf m _1 1 < dplwmr ( 17)
A

and 3 m— 1 > Ap/anar ( 18)
where: o,, denotes the noise of LIDAR

measurement; o,,, denotes threshold for planar
feature; A, denotes the single cell size of local
voxel map M-

Eq. (17) and Eq. (18) sets criteria for filtering
out planar feature with requirements to the
distribution of neighbor points. Eq. 16 estimates the
uncertainty of feature directly from points data. And

similarly, the feature is edge feature parameterized as:

{C’ n3, Zedge} (19)
A+ A,
Where Eyclg(/ — max ( l - ’ Gin'm’) (20)
m—1
if htd QD
m—1 ¢

But in fact, edge feature is not as stable as planar
feature due to noisy points in the real data, which
may be points of vegetation. Thus, before classified
as an edge feature, the feature must not be a
degenerated feature. The feature is degenerated

feature parameterized as:

where A, denotes the single cell size of local voxel
map M, .

The form of degenerated feature is very similar
to planar feature but with punishment of uncertainty in
Eq. (22) for reducing its weight for optimization. It
does not matter to discard this kind of feature in most
time, but it helps when the environment is too noisy
to extract other types of feature. If the degenerated

feature is exploited, Eq. (10) is rewritten as:

Im T/Z - arg m%n (2 H dw[g(' +
wln

Ze )

where d, is point-to-plane distance analogous to
Eq. (12).
2.8 Graph based mapping

Although LiDAR odometry is much more

Sedge

(24)
S| dyianar

N 2

accurate than wheel odometry, it suffers from drift
after travelling a long distance because of the nature
of odometry, which accumulates error. Extra
measurements are required for eliminating drift for
creating global map with internal consistency. Loop
closure is a solution for the trajectory with loop. And
fusing GPS measurements is another practical way
when the GPS signal is available. Both approaches
are integrated to correct drift using a unified factor
illustrated by Fig. 8. It is

incrementally via iISAM™" algorithm with the open-

graph''” solved
sourced implementation GTSAM"™' , which makes
the mapping module able to run online efficiently.

The global map is arranged as a series of poses
associated with submap generated from registered
frames, which is a kind of topological map''. To
reduce the scale of the graph, new pose is added
every five meters assuming the drift of LiDAR
odometry is small within a short distance. Four types
of factor are introduced for optimizing the poses as
shown by Fig. 7. Prior factor just set the coordinate
origin to the start point of the trajectory. LiDAR
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odometry factor and loop closure factor are

implemented as described in reference [5]. The
detail of them is omitted for the sake of brevity.

For fusing GPS measurement, an unknown
transformation , T, i1s assumed, which transforms
point from mapping coordinate to GPS coordinate.
The GPS factor evaluates the difference between
GPS measurement and its prediction using T, and

the poses of submap as:
f ( Tk’ gps Tmup) -

H translation (A,P_( T,,m,,-Tk) Tl | (25)

where: T, is the pose of submap; 7, 1s GPS
measurement expressed in cartesian coordinate like
ENU system; 3, is covariance matrix expressing the
The graph

structure for GPS factor is similar to that in reference

uncertainty of GPS measurement.

[20] but specialized for GPS measurement.

The GPS factor requires no extra process to
transform GPS measurements to the local, but
estimates the transformation automatically as well as
correcting the drift in a unified optimization process,
which simplifies the GPS fusion and is compatible to
ISAM  for it can

incrementally. This makes the system robust to the

fuse GPS measurement
GPS signal quality, because it only requires a few
GPS measurements to correct pose instead of
continuous GPS measurements. Once GPS fails, the
measurement 1s just dropped out till the signal
recovers. The system may drift during the GPS-
denied time, but the error can be corrected when
GPS is available or a loop closure is detected. Only
one limit is that it requires at least three GPS factors

to form a closed constraint (see Fig. 8).

3 Experiments

The proposed algorithm 1s tested on the laptop
with 15-8265U CPU under Ubuntu 18.04. Tab. 1
shows the working frequency of each module.
Because wheel odometry is triggered by the wheel
encoder, its frequency is proportional to the vehicle
speed and limited by the updating rate of encoder.
The feature extraction, point de-skewing and LiDAR

._.—o——.n——n-

@ * ° *

©

Pose GPS Prior LiDAR Loop GPS
transform factor  odometry closure factor
factor factor

Factors are visualized as lines with different markers. Estimated
variables are visualized as circle with variable names.

Fig.8 Factor graph for fusing measurements

Odometry process 10 Hz point cloud data in one
pipeline and drop out data when system is busy with
no harm to performance. The graph based mapping
record map data in a low frequency in most time and
optimizes the global map only when loop closure is
detected or GPS is available. The workload is well
balanced to meet a real-time performance of odometry
and online processing of global mapping. When the
GPS signal 1s available, the local map is well located

in the GPS coordinate system.

Tab.1 System update frequency

Modules Frequency/Hz
Wheel odometry 10-50
Feature extraction and point de-skewing 10
LiDAR odometry 8-10
Graph based mapping 1

For further evaluation of the performance of
accuracy, the proposed method was compared to
several previous works using their open-sourced
implementation, which are listed in Tab. 2. And
three datasets were collected from the autonomous
vehicle platform for benchmark, which are listed in
Tab. 3. For the sensor configuration of LIO-SAM,
the IMU and GPS is both provided by RT 3002,
which is an inertial and navigation system produced
by OXTS company. As GPS is used as an optional
correction both for LIO-SAM and proposed method,
it 1s filtered by signal quality and is assumed a noise
with 1 m standard deviation for both methods.

The accuracy of trajectory was evaluated by

comparing it with the ground truth trajectory obtained
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Tab.2 Sensor configuration and loop closure
of compared SLAM Algorithms

Algorithm Sensors configuration Loop closure
A—LOAM™ LiDAR No
LeGO—LOAM"! LiDAR Yes
LIO—SAM™ IMU~+LiDAR4-optional GPS Yes
Proposed WLOAM  Wheel+LiDAR+optional GPS Yes

Tab.3 Details of datasets

Trajector . Average
Dataset e njglh /nZ Environment speed/ (k%n /h)
Single Loop 2883  Building and vegetation 14.8
West Campus 2 276 Almost building 13.3
South campus 8088 Building and vegetation 15.8

from RT 3002, which was expected to be of high
accuracy with 2 cm standard deviation in the RTK
mode. But due to the signal quality, the accuracy
would degenerate occasionally and the device would
indicate no RTK mode available. Thus, only the data
in RTK mode was exploited. Noting that the GPS
measurement i1s of worse accuracy in altitude, the
accuracy 1s also evaluated by projecting trajectory to
ground plane and calculating horizontal position error.

Absolute pose error (APE) and relative pose
error (RPE) are widely used for evaluating precision
of SLAM algorithm™". For the APE, the trajectory
was firstly aligned to ground truth trajectory using
Umeyama's algorithm, and then calculating APE
using Eq. (26) and APE 2D using Eq. (27):

average(APEl:m) :%E”;IH trans(Q;ISPf) H (26)
average(APE 2D1:,,,):

L Juns((@) (sed)| 7

where: Q; denotes the ground truth pose; P, denotes

the estimated pose; S denotes transformation for

aligning trajectory; frans(+) means extracting
translation part of a pose; {-) means extracting 2D
pose from 3D pose by projection.

For calculating the RPE, a pair of poses A
meters apart along the trajectory are selected from
ground truth trajectory and estimated trajectory
respectively. And it is calculated using Eq. (28) :

average ( RPE?,, ) =

lZM
m i=1

(28)

trans((Qle:’m) 1P71P”“>H

The drift rate with respect to trajectory length A
is defined as:
average( RPE?,,)
A
Just as described in reference [22], a series of

drifty= x100% Q29

trajectory length A, are selected and further an overall
RPE is obtained using Eq. (30) and an overall drift
rate is obtained using Eq. (31):

L zl_m,- average < RPE?,, ) 30

Zimi
drift s = Z‘jm Z e drift

RPE(JWW// -

D

Fig. 9 shows the odometry trajectory without the
correction of loop closure and GPS measurement.
LeGO-LOAM and LLIO-SAM suffer from more z-
directional drift than the proposed method. Tab. 4
shows the overall drift rate in the pure odometry
mode for each method. Note that A-LOAM is
dropped out for this comparison for it is possible for it
to performance loop closure in an implicit way and it

is not possible to turn it off.

In pure odometry mode, the drift in the z direction is
significant for LeGO-LOAM and LIO-SAM.

Fig.9 Comparison of odometry

Tab.4 Drift rate of odometry

mode drift/ %
LeGO-LOAM 2.79
LIO-SAM 0.99
WLAOM 0.76

Fig. 10 shows the estimated trajectories in
comparison with the ground truth. Most trajectories
match the ground truth well except for A-LOAM and
LeGO-LOAM. A-LOAM deviates significantly from
the ground truth trajectory in Fig. 10a and Fig. 10b
for its implicit method failed to perform loop closure.
LeGO-LOAM fails to detect
Fig. 10a. This indicates that the accuracy can be

loop closure in
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The GPS-RTK is not always available due to the signal quality,
thus the trajectory is the disconnected line segments in Fig. 10. Most
trajectories match the GPS-RTK trajectory well excepting the A-
LOAM and LeGO-LOAM.

Fig. 10 Comparison of trajectories

greatly improved if loop closure is performed
successfully. Otherwise the accuracy is undermined
by the drift. For dataset South Campus shown in
Fig. 10c, only methods with GPS succeed and is
plotted on the figure while other methods accumulate
too much error and fail to find loop closure. This
indicates that the combination of odometry and loop
closure works well only when the loop is not too
long, because the loop closure method is position-
based in this paper, where too large position error
leads to failure. But fusing GPS deals with this
problem by limiting the drift.

Fig. 11 shows the drift rate in different trajectory
lengths, where the proposed method with GPS
outperforms others and has a similar performance
with LIO-SAM if GPS is removed. Tab. 5 shows the
absolute accuracy by APE or APE 2D and relative
accuracy by overall drift rate, where the best and
second best is shown in bold character. Note that the
APE 2D is much smaller than APE when the GPS is
removed but the difference gets small when GPS is
fused. This is because the accuracy of altitude
measurement by GPS is relatively low due to the
nature of GPS measurements, which makes up the
majority of difference between estimated trajectory
and ground truth. However, when GPS is fused, the
estimated trajectory is forcedly aligned to the GPS
measurements eliminating the difference.

Fig. 12 shows the mapping result of South
GPS

correction is fused so that the point cloud map is

Campus dataset using proposed method.

automatically aligned to the satellite map using the
estimated transformation from the local coordinate to
the GPS coordinate.

4 Conclusions

This  paper SLAM
WLAOM exploiting different sensors for real-time

proposeds  a system
odometry and online mapping. An improved feature-
based LLIDAR odometry method is enhanced by a
kinetic-model-based wheel odometry method to
produce low-drift pose estimation with low delay. A
graph-based method is introduced for fusing loop
closure and GPS measurement, where an Auto-
Aaligned-GPS factor is modeled to correct pose and
estimate alignment parameters. This makes it
possible for the system to map a broad area covering
several kilometers even when the GPS signal is not
always available. But GPS measurement contains
more uncertainty in altitude, which is ignored now
and may cause bad estimation of roll and pitch when
the signal quality is poor. Thus, a future work is to
fuse the information about the roll and pitch angle. It
may come from inertial measurement which contains

information about the gravity. In addition, because
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The proposed method and LIO-SAM achieve much better performance than the other methods on drift rate. For all datasets, the proposed
method with GPS performs best. In a and b, without GPS, LIO-SAM and the proposed method achieve a closed performance. In c, all methods
without GPS failed. Only the proposed method and LIO-SAM with GPS survive and the proposed method has a lower drift rate.

Fig. 11 Comparison of drift rate.

Tab.5 Accuracy of trajectory

Alvorithm Single loop West campus South campus
gorit APE/m  APE2D/m drift/%  APE/m APE2D/m drift/% APE/m APE2D/m  drift/%
A—LOAM 16. 00 14. 60 1.92 6.19 4.03 1.38 — — —
LeGO—LOAM 16. 30 14.45 2.30 1.80 0.33 1.49 — — —
LIO—SAM w/o GPS 4.55 1.65 1.08 0.78 0.23 0.68 — — —
LIO—SAM with GPS 1.11 1.05 0.82 0.46 0.11 0.57 0.85 0.78 0.70
WLOAM w/o GPS 4.94 0.85 1.18 0.64 0.19 0.51 — — —
WLOAM with GPS 0.32 0.30 0.49 0.14 0.09 0.24 0.27 0.26 0.53

The point cloud is visualized as brighter points.

Fig. 12 Global point cloud map of the South campus aligned with satellite map

the system is well de-coupled as separated modules,  evaluation work is left for the future.
it is possible to transplant the system to other
platforms like drone by only replacing the Wheel  References:

Oodometry module with the inertial system. And
[1] CADENA C, CARLONE L, CARRILLO H, et al. Past,

Moreover, as described in chapter 2.4, a general . - .
present, and future of simultaneous localization and mapping:

LIDAR data format requirement makes the system toward the robust-perception age [J]. IEEE Transactions on

compatible with different type of LiDAR, but the Robotics, 2016, 32(6):1309. DOI: 10.1109/TRO.2016.2624754.



5 S13

PR B, 46 - RlE A S RIBOL TR IR I AR5 2 1A

185

(2]

(5]

[7]

(10]

[11]

[12]

BRESSON G, ALSAYED Z, YU L, et a/. Simultaneous
localization and mapping: a survey of current trends in
autonomous driving [J]. IEEE Transactions on Intelligent
Vehicles, 2017, 2(3):194. DOI: 10.1109/T1V.2017.2749181.
MOHAMED S A S, HAGHBAYAN M H,
WESTERLUND T, et al. A survey on odometry for
autonomous navigation systems [J]. IEEE Access, 2019, 7:
97466. DOI: 10.1109/ACCESS.2019.2929133.

ZHANG J, SINGH S. Low-drift and real-time lidar odometry
and mapping [J]. Autonomous Robots, 2017, 41 (2) : 401.
DOI: 10.1007/s10514-016-9548-2.

SHAN T, ENGLOT B, MEYERS D, e a/. LIO-SAM:
tightly-coupled lidar inertial odometry via smoothing and
mapping [C]// 2020 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). Las Vegas: IEEE,
2020: 5135.

BRUNKER A, WOHLGEMUTH T, FREY M, ez al. Odometry
2.0: a slip-adaptive EIF-based four-wheel-odometry model for
parking[J]. IEEE Transactions on Intelligent Vehicles, 2019, 4
(1): 114. DOI: 10.1109/TIV.2018.2886675.

SHAN T, ENGLOT B. LeGO-LOAM: Lightweight and
ground-optimized lidar odometry and mapping on variable
terrain [C]// 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). Madrid: IEEE,
2018: 4758.

KAESS M, RANGANATHAN A, DELLAERT F. iISAM:
Incremental smoothing and mapping[J]. IEEE Transactions on
Robotics, 2008, 24(6): 1365. DOI: 10.1109/TRO.2008.2006706.
KAESS M, JOHANNSSON H, ROBERTS R,

ISAM2: Incremental smoothing and mapping using the bayes

et al.

tree[J]. The International Journal of Robotics Research, 2012,
31(2): 216. DOI: 10.1177/0278364911430419.

UMEYAMA S. Least-squares estimation of transformation
parameters between two point patterns [J]. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 1991, 13(4) :
376. DOI: 10.1109/34.88573.

QUIGLEY M, GERKEY B, CONLEY K, et a/. ROS: An
open-source robot operating system [C/OL]. (2009-01-01)
[2021-08-25].
303138182_ROS_An_open-source_Robot_Operating_System.
SRIEEE . 4 E SN RGO THIARBESE (D], 1 [F]
PER2E, 2016.

https://www. researchgate. net/publication/

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

GUO Yuanyuan. Research on pose estimation technology of
fully automatic parking system [D]. Shanghai:
University, 2016.

RAJ T, HASHIM F H, HUDDIN A B, et al. A survey on
LiDAR scanning mechanisms [J]. Electronics, 2020, 9 (5) :
741. DOI: 10.3390/electronics9050741.

XU W, ZHANG F. FAST-LIO: A fast, robust lidar-inertial
odometry package by tightly-coupled iterated Kalman filter[J].
IEEE Robotics and Automation Letters, 2021, 6(2) : 3317.
DOI: 10.1109/1.RA.2021.3064227.

HARTLEY R, ZISSERMAN A. Multiple view geometry in
vision [M]. 2nd ed.
University Press, 2003.

ZHANG S, XIAO L, NIE Y, e al. Lidar odometry and

mapping based on two-stage feature extraction [C]// 39th

Tongji

computer Cambridge: Cambridge

Chinese Control Conference (CCC 2020). Shenyang: Chinese
Association of Automation, 2020: 3966.

DELLAERT F, KAESS M. Factor graphs for robot perception
[J]. Foundations and Trends in Robotics, 2017, 6(1/2) : 1.
DOI: 10.1561/2300000043.

DELLAERT F. Factor graphs and GTSAM: A hands-on
introduction[J]. Georgia Institute of Technology, 2012. [ 2021-
06-251.
Graphs-and-GTSAM % 3A-A-Hands-on-Introduction-Dellaert/
b94b{48299d78cd586¢057e700763ec09bSSL80.

YANG A, LUO Y, CHEN L, et al. Survey of 3D map in
SLAM: Localization and navigation[C]// FEIM, MA S, LI
X, et al. Advanced Computational Methods in Life System

https://www. semanticscholar. org/paper/Factor-

Modeling and Simulation. Singapore: Springer Singapore,
2017: 410. DOI: 10.1007/978-981-10-6370-1_41.

DING W, HOU S, GAO H, ez al. LiDAR inertial odometry
aided robust LIDAR localization system in changing city scenes
[C]// 2020 IEEE International Conference on Robotics and
Automation (ICRA). Paris: IEEE, 2020: 4322.

STURM J, ENGELHARD N, ENDRES F, e al. A
benchmark for the evaluation of RGB-D SLAM systems[C]//
2012 IEEE/RSJ International Conference on Intelligent Robots
and Systems. Vilamoura-Algarve, Portugal: IEEE, 2012.
GEIGER A, LENZ P, URTASUN R. Are we ready for
autonomous driving?  The KITTI vision benchmark suite
[C1// 2012 TIEEE Conference on Computer Vision and Pattern
Recognition. Providence: IEEE, 2012.



