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Abstract:

safety of the new generation of vehicles, this paper

To enhance the functions and improve the

collected abundant history data of vehicles and then
created a rule-based model by using machine learning
methods, so as to detect the faulty vehicle in a fleet.
Several steps were designed for detailed illustration, and
the validation of the method was conducted through
electrical fault of the LV (lithium-cobalt) battery. The
results can be used as input for the test bench tests of the

following vehicle generations.
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1 Introduction

Development and testing in the automotive

Wk H M. 2021-08-30

industry is increasingly taking place virtually due to
For the

development of new generations of vehicles, the

ever shorter development cycles'.

current
The

information on the operation of the vehicles is

knowledge gained from operating the

generation of vehicles is a decisive benefit.

available as fleet data in the form of load spectra,
switch-on frequencies, error states and operating
states. The load spectra and switch-on frequencies
are derived from classification, which represent the
vehicle-specific use. The vehicles that had a fault, for
example in a component of the drive system, are
known from the error states. The aim is to identify
the cause of these faults from the load spectrum in
order to use them as test conditions. To this end, the
following research question should be answered:
What similarity do the faulty vehicles have in their
use that distinguishes them from the fleet of non—
Jfaulty vehicles?

Bergmeier” addressed a similar topic, but chose a
different approach and focused more on an algorithm
comparison. Current publications, as in renferrnce
[3], are more concerned with the topic of predictive
maintenance and the analysis of time series. This paper
collected abundant history data of vehicles and then
created a rule-based model by using machine learning
methods, so as to detect the faulty vehicle in a fleet.
Several steps were designed for detailed illustration,
and the validation of the method was conducted
through electrical fault of the LV (lithium-cobalt)
battery. The results can be used as input for the test

bench tests of the following vehicle generations.
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2 Fleet data basics

The analysed fleet data consists of >12 000
vehicles of the same vehicle model equipped with an
electric  powertrain.  Together,  these have
completed =225 million kilometres and >>6 million
charging operations at the time of the analysis. The
fleet data are available as load spectra. l.oad spectra
refers to the totality of all loads occurring on a
component over a certain period of time, which are
triggered by torques, speeds, accelerations,
temperatures, etc. The data is continuously recorded
during customer operation and converted from the
time domain to the frequency of occurrence and
stored. For the classification (see Fig. 1), different
classification methods are used, such as cumulative
frequency, energy meter and current meter. After
classification, the cumulative frequencies are assigned
to the previously defined load spectra classes. During
the garage visit, the data is read out and stored in a

database.

load spectra
classification

cumulative frequency

time load spectra class

Fig. 1 Load spectra classification

If a component is replaced in the workshop due
to a defect, this is stored in a separate database and
the vehicles concerned are classified as faulty
vehicles. In addition to the information on the
vehicle, date and component, a high-level error
description 1s also saved. Based on the high-level
error description, an analysis of the most frequent
error cases was carried out and these were examined
for their causes using the method presented below. In
this paper, the electrical fault of the LV battery is
used as an example application. Tab. 1 shows the size
of the examined dataset, which was created after
merging and filtering the data sets of the load spectra
and component faults.

The dataset studied also has the following

Tab.1 Dataset facts after merging and filtering

Faulty vehicles Total vehicles

215 > 8,500

Load spectra classes
= 500

special features that had to be considered in the
development of the method. Most of the data
included are not normally distributed. There are
some linear dependencies between the variables, as
everything is time-based, for example. In addition,
the ratio of faulty vehicles to the rest of the fleet is
extremely imbalanced, which also influenced the
chosen evaluation metrics.

Various metrics exist for evaluating the model
quality of the created and trained models. In the
paper, two metrics are used: the balanced accuracy
score”’ , and the recall score, which are briefly
explained below.

Balanced Accuracy Score (BAS)

calculates the

BAS

weighted accuracy suitable for

unbalanced datasets. Each sample 1s weighted with
the inverse frequency of its true class. BAS is

calculated according to

. 1 . .
BAS(y.gow) =g D HI=p)d D

where: y is the predicated value; y is the real value;

w is calculated from the real value and the associated
weighting according to
'w.

2j1<yj:yz‘)wf 2

Recall Score: The recall score is the ratio of

=

true-positive predictions (z,) to the sum of true-
positive and false-negative predictions (f,, and thus
describes the algorithm's ability to find the positive
samples. It is suitable for unbalanced datasets, where
the positive samples are the under-represented group

in the dataset. The corresponding equation is:

ks (3)
t,+ 1, 3

recall =

3 Presentation of the method

The procedure developed is divided into seven
steps, which are shown in Fig. 2 and presented
below. At the beginning, the datasets were cleaned

during preprocessing and prepared for the following
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analyses. In Step 2, the datasets were visualized by

graphically — displaying the faulty vehicles in
comparison to the rest of the fleet. Any outliers
within the faulty vehicles were detected and removed
in Step 3. Then, in Step 4, the dataset was divided
into the training data and the test data before
upsampling and downsampling the training data set in

Step 5. In Step 6, the load spectra classes relevant

Pre-Processing { Outlier Detection

Filtering + Determine and
i+ Scaling i delete outlier
i+ Eliminate i Robust Covariance
Correlations
Step 1

i Visualisation

for the respective error were determined. This step
serves to reduce the dataset in order to reduce the
runtime of subsequent algorithms. In the last step,
rules were determined that apply to the occurrence of
the errors. Finally, from these rules, the conditions
that faulty vehicles have in common could be

extracted and differentiated from the rest of the fleet.

i Up-/Downsampling
Handling of the
imbalanced data set
SMOTEENN

| Rule-Learning-
i Algortihms
+ IREP, RIPPER &

SK+PE-RULES

Step 2 b Step3 Step 4 -‘

i Data Split
i oy i + Creation of a training
I and a validation set

Feature Selection
I ;

Fig.2 Seven steps of the method

Step 1: Pre—processing
In Step 1, pre-processing, the datasets are
For the

faulty vehicles, a dataset is created in which the load

prepared for the subsequent algorithms.

spectra at the time of the fault occurrence are stored.
For the rest of the fleet, a dataset is created in which
the most recent load spectra per vehicle are stored.
The two datasets are then merged and a label is
introduced that distinguishes the faulty vehicles from
the rest of the fleet. Through the label, supervised
learning algorithms can subsequently be applied.

Filtering removes the columns in which only the
value O occurs or which consist of 10% NaN values.
Then the rows in which NaN values still occur are
removed. Finally, no NaN values may be present in
the dataset for the machine learning algorithms.
Additionally, only vehicles with a mileage greater
than 1 000 km are considered further.

During further analysis of the dataset, it was
found that there are correlations between the
individual features. For example, the values of the
energy meters and current integrals of a component
are directly linearly dependent. Such correlations
generally do not improve machine learning models.
with  random  forest

Especially algorithms,

correlations can lead to worse results. In this case,
the existing correlations are determined by means of a
correlation analysis and removed by deleting one of
the affected features from the dataset.

The dataset used is composed of various physical
quantities. It contains date values, time-based and
trip-based counter values, kilometre readings, energy
counters and electricity integrals. The corresponding
value ranges of the different variables can differ by
several powers of ten. In order to weight all variables
equally for the following evaluations and to avoid that
variables with a large value range (and thus large
variance) mainly describe the dataset, the individual
variables must be scaled. For the problem at hand, a
percentage scaling was applied. The load spectra
with more than one class are considered (one class
corresponds to one feature in the following) and the
percentage distributions of the classes per load spectra
The value

range is between O and 1, whereby with the value 1

are calculated from the counter values.

only one class of the respective load spectra has
counter values. The advantage over standard scaling
is that the scaled values can still be interpreted by the
user. However, the percentage scaling can only be

applied to load spectra with more than one feature. In
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this respect, it is combined with the standard scaling.
Step 2: Visualization

Step 2 is to visualise the dataset for the user.
The am is to highlight the faulty vehicles in
comparison to the rest of the fleet in order to identify
similarities where applicable. Since the dataset still
consists of =500 features after filtering, a direct
visualisation is not possible. In this respect, data
reduction methods must first be applied. These
reduce the dataset to two dimensions, which can then
be plotted for the user. The data reduction is carried
out in two stages for the present dataset. In the first

[6]

stage, the principal component analysis™ is applied
and then the t-SNE algorithm™ is applied to its
results. This has the required two dimensions as a
result.

Fig. 3 shows the result. The faulty vehicles are
highlighted. When interpreting the results, one can
clearly see that there are clusters of faulty vehicles in
the lower area and at the top right. It can be assumed
that these vehicles have similarities. It can therefore
be assumed that the causes or indications for the
failures can be found in the further analyses with the
In addition,

methods of machine learning. some

faulty wvehicles are scattered over the reduced
dimension space. The vehicles can be regarded as

noise. This will be examined in more detail below.

+ veh.without failure

« veh.with failure
60 {

»
o

t-SNE Dimension 2

-0 20 20 40

[
t-SNE Dimension 1

Fig. 3 Visualisation of the fleet and faulty vehicles

Step 3: Detection and removal of outliers

In Step 3, the outliers determined visually in
Fig. 2 are now to be detected in order to subsequently
determine whether removing the outliers increases the
model quality. For this purpose, cluster analysis
algorithms and algorithms for the detection of outliers

were implemented and tested.

The best result with a balance accuracy score of
84% was achieved by the local outlier factor
algorithm , applied to the dataset reduced by t-SNE
and then SMOTEENN"". However, further analysis
shows that fluctuations in the result occur when
applied to the reduced dataset. This is due to the
algorithm t-SNE, which also displays clusters/
outliers if the parameters are set incorrectly, but
which are not in the high-dimensional dataset. For
this reason, the application to the high-dimensional
The

showed the best result with a balance

dataset was favoured. robust covariance

algorithm"”
accuracy score of 78 %. This result is also reproducible
compared to the result based on the t-SNE.
Step 4: Creation eof training and test data

In Step 4, for further analysis, the dataset was
split The
StratifiedShuffleSplit algorithm'”’ was used for this
purpose. This split the dataset by randomizing the

into a traming and test dataset.

input data and considering the percentage of faulty
and non-faulty vehicles of the input dataset in the
training and test dataset.
Step 5: Up/downsampling of training dataset

In Step 5, a challenge in the existing dataset is
the imbalance between faulty and non-faulty vehicles.
This imbalance is, for example, 1: 35 for the
electrical fault of the LV battery.

The
algorithms that weight all results equally to calculate

imbalance becomes problematic  with
the accuracy, especially since the state of interest
usually represents the minority. The problem can be
On the one hand,

algorithms allow the accuracy calculation to be

solved in two ways. some
switched to a balanced accuracy score. On the other
hand, the dataset can be adjusted by over- and
undersampling algorithms in such a way that the
imbalance is eliminated. Various algorithms were
The SMOTEENN

algorithm showed the best results and was selected

investigated for this purpose.

accordingly. It is a combination of the oversampling
algorithm  SMOTE"™" and the
algorithm edited-nearest-neighbours (ENN)""*/,
Step 6: Feature Selection

undersampling

In Step 6, the feature selection step has two
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reasons. First, it should give the user the opportunity
to get an overview of the relevant features. If
necessary, there may still be features in the dataset
that are, for example, not a cause but a consequence
of the error. These must be removed for further
analysis.

Furthermore, it was investigated whether the
model quality can be increased by removing irrelevant
features. In other words, whether it is possible to
reduce the number of features while maintaining the
same model quality. If this is possible, a reduced
dataset can be used for the following rule-learning
procedures. This leads directly to shorter calculation
times.

Three methods were investigated to determine
the relevant features: Bergmeir's method”', feature
selection by means of recursive feature elimination""”
and a method in which the selected algorithms are
applied simultaneously by means of a pipeline.

The method according to Bergmeir was not
pursued further due to its long runtime, but only used
as a reference.

The recursive feature selection algorithm is
applied after Step 1, scaling the data. The 10 most
important features are selected and displayed.
Afterwards, the user has the option to remove the
features he or she considers unsuitable (expert step).

The third implemented and investigated method
of feature selection is by means of a pipeline. A
pipeline is used to execute several algorithms one
after the other and to test them with different
parameters within a cross-validation. The procedure
is shown in Fig. 4. At the beginning, the so-called
hyperparameters (the search space) are defined for
the parameters that are to be varied. For the problem
at  hand,

ExtraTreesClassifier

only the hyperparameters for the

algorithm'*' are examined.
Then the input data are divided into training and test
data within the cross-validation. Then the pipeline
starts. Within the pipeline, the down-/upsampling
method SMOTEENN is called for the training data.
Then the ExtraTreesClassifier is trained with the
hyperparameters selected by random search on the

training data after SMOTEENN. The trained model

is then passed to the SelectFromModel algorithm™’,
which selects the relevant features based on the
importance of the individual features learned by the
ExtraTreesClassifier. The mean of all feature
importance values is used as the threshold value for
the selection. With the reduced dataset (elimination of
unimportant features) , a RandomForestClassifier "’
is learned as the last step of the pipeline. The result
of the pipeline 1s a trained model whose accuracy is
verified against the test data. Balanced accuracy is
used for this purpose, as the input data set is highly
unbalanced. This procedure is repeated for a defined
number of iterations. For each iteration, new
hyperparameters are randomly selected from the
defined The

RandomisedSearchCV""* is finally a model for which

search  space. result of the
the balanced accuracy score is the highest. The model
consists of the algorithms contained in the pipeline.
Finally, the relevant features are determined from the

algorithm SelectFromModel.

[ Init Hyperparameter Grid ]

/ Cross Validation RandomizedSearchh
SMOTEENN

[ ETC = ExtraTreesClassifier ]

Pipeline

[ selectFromModel(ETC) |

[ RandomForestClassifier ]

u Balanced Accuracy Metrics ] /

Fig. 4 Feature selection via pipeline

Step 7: Determinatione of rules

Step 7 is to determine rules. A rule is a simple if-
then statement consisting of a condition and a
prediction. The prediction in the present use case is
the detection of the faulty vehicles. This is already
The condition is the cause of the faults
This is the to be
determined in Step 7. Within the framework of the
developed method, the Skope Rules, IREP and
RIPPER algorithms are used for this purpose.

known.

occurring. relevant  aspect

Skope Rules: Skope-Rules is an interpretable

rule-based classifier. The rules are semantically
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deduplicated based on the variables that make up the
rules'"”.

IREP & RIPPER: The algorithms IREP
(incremental reduced error pruning) and RIPPER
(repeated incremental pruning to produce error
reduction) are based on the same principle, whereby
RIPPER is an extension of IREP. A rule is learned
and the learned rule is added to a rule set. The data
points covered by the learned rule are removed from
the data set. A new rule is then learned on the
remaining dataset. This happens until a termination
criterion 1s reached. Both algorithms differ in the
definition of the termination criteria. In addition, an
optimisation phase was added to the RIPPER

algorithm"*"”,

4 Results

The algorithms RIPPER, IREP, and Skope
Rules were applied to the problem at hand. Tab. 2 lists
the results of the evaluation metrics. The algorithms
achieve equally good results for the problem at hand

with a balanced accuracy in the range of 80%5.

Tab. 2 Model balanced accuracy (Unit: %)

IREP RIPPER Skope Rules
BAC Recall BAC Recall BAC Recall
79.1 83.3 79.7 83.3 82.3 74.1

Furthermore, an example rule of the algorithm
Skope Rules is listed (see Tab. 3). The algorithms
IREP and RIPPER show the disadvantage that the
determined rules are only given with an accuracy of
two decimal places. The Skope Rules algorithm, on
the other hand, is not limited in its accuracy :

PROD _DT <<= 22.02. 2015 &. LK74-2_X6 >
0.0025% &. LK85-2_X1>0.17%

To check the plausibility of the method, the

rules determined were divided into the individual load

spectra classes. A comparison was then made
between the faulty vehicles and the rest of the fleet
(reference) for these load spectra classes. Tab. 3
shows the relevant rule conditions derived from the
rules. The rule conditions are derived from the results
of the three algorithms IREP, RIPPER and Skope
Rules, considering the metrics score and the
frequency of occurrence. The individual load spectra
classes are shown and described graphically below for
comparison. At the end of the section, a summary of
the findings is given.

Fig. 5 shows the boxplot diagram for the outside
temperature. The algorithm has derived a rule for
class 5. In the evaluation, a difference between the
faulty vehicles and the rest of the fleet can be seen for
the determined class. A difference is also visible for
class 4. This leads to the conclusion that the
examined fault occurs in vehicles that are exposed to
higher outside temperatures.

The distributions of the production date are
shown in Fig. 6. The faulty vehicles show an increase
in earlier production dates, as the calculated rule also
indicates.

The influence of the charging power on the
investigated error derived from the rules is shown in
Fig. 7. It can be seen that compared to the fleet, the
faulty vehicles were charged with higher charging
powers.

The comparison between faulty vehicles and the
reference fleet for the load spectrum of the current of
the onboard charger is shown in Fig. 8, in which a
clear difference can be seen. In the faulty vehicles, a
larger proportion of the charging processes take place
in class 6, while in the reference fleet this is class 4.

Fig. 9 shows a histogram of the percentage
distribution of the faulty vehicles and the reference
fleet for the sales area. It is clear that the majority of
the defective vehicles are in the 700 range. The more

Tab.3 Rule conditions

Load spectra Description

Rule condition 1 Rule condition 2

LK108_1_X5 Outside temperature slass 5 =0.00023 % —
LK74_2_X6 Current onboard charger class 6 =0.0025 % <99.6 %
LK85_2 X5 Charging power class 5 >0.17% <99.6 %
PROD _DT Production date =>30. 04. 2014 =22.02. 2015
SALES_AREA 1D Sales are =221 —
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Fig. 5 Boxplot diagram of outside temperature
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Fig. 8 Boxplot diagram of the current of the

onboard charger

detailed analysis showed that 83 % of the vehicles
were sold in the USA.
of higher

determined in Fig. 8, this leads to the assumption that

In combination with the

influence onboard charger currents
the lower line voltage has an influence on the fault.

In summary, the rules derived by means of the
presented method for the investigated electrical fault

of the LV battery could be plausibilized. It could be

shown that with the rules the load spectra classes
were found in which a deviation between the fleet and
the faulty vehicles is present.

| —Reference
280
——Failure
—
2 USA
< 60
5
g
w40
5
€
é 20
<.
%300 300 400 500 600 700 800

Sales area

Fig. 9 Histogram of sales area

5 Conclusions

A method for identifying the causes of faults
from fleet data was developed which is divided into
several steps with the aim of first processing the input
data and then learning rules for detecting the faulty
vehicles. The processing of the input data serves to
improve the detection result. The application of the
method was implemented using Python scripts and
exemplified with the electrical fault of the LV

battery. Subsequently, a plausibility check was

performed and the functionality was proven. The
results can be used as input for the test bench tests of

the following vehicle generations.
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