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粒关系演算：关系计算与数据的桥梁

PEDRYCZ Witold
（阿尔伯塔大学 电气与计算机工程系，埃德蒙顿 T6R 2V4）

摘要：粒计算及其理论，尤其是模糊集，为处理概念实体信

息粒提供了全面的概念框架和处理机制，但现有的信息粒处

理机制不能充分利用实验数据的特征。基于粒计算推导出

的理论来增强关系计算和模糊关系计算的基本结构。认为

可以通过结合现有数据所控制的描述性组件来增强关系演

算领域中的规范性结构。实验表明，合理粒度原则有助于增

强现有结果，并将实验结果以信息粒的形式进行了展示。
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Abstract：While granular computing，in particular fuzzy
sets，offers a comprehensive conceptual framework of
managing conceptual entities-information granules with
the processing mechanisms provided by fuzzy sets，this
mechanism does not fully engage experimental data
whose characteristics could be fully incorporated in the
obtained results. Having this in mind，the fundamental
constructs of relational computing and fuzzy relational
computing were augmented by mechanisms originating
from the area of granular computing. It is advocated that
the prescriptive constructs existing in the area of
relational calculus are augmented by incorporating a
descriptive component，which is governed by the existing
data. It is shown that the principle of justifiable granularity
helps enhance the existing results by experimental
evidence residing with the data and develop the results in
the form of information granules.

Key words：granular computing；principle of justifiable

granularity； relational calculus； projection；

reconstruction；fuzzy relational equations

Relational computing［1-2］ has been one of the
focal points of fundamental research in fuzzy sets and
interval analysis. The well-known concepts，such as
projection， Cartesian product， and composition
operators， are prescriptive， viz. they provide
universal concepts and a way of generic computing
that navigate processing sets and fuzzy sets. A
number of them can be regarded as certain
aggregation procedures involving many arguments so
it could be beneficial to have them endowed with
abilities to capture the nature of data they operate on.
For instance， the projection operation returns the
maximal value of the characteristic function or
membership function. Adding a descriptive facet to
the constructs and making them have a prescriptive-
descriptive character could be a desirable property.
Having this in mind， in the present study， it is
advocated that the results of such aggregation can be
conveniently described as information granules
reflecting the diversity of the partial results. In other
words， the ultimate objective is to revise and
augment the mechanisms and results of relational
computing by engaging the mechanisms of granular
computing ［3-7］. It is shown that the principle of
justifiable granularity serves as a sound conceptual
vehicle to accommodate the characteristics of data by
producing a granular format of the results.
Interestingly， this avenue of developments of
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relational constructs has not been fully investigated.
There have been some initial studies pointing at the
statistical properties of logic operators that impact the
resulting operator；however the idea of information
granules as a result of such logic operations has not
been studied.

In this paper， some generic definitions are
presented concerning Cartesian products，projections
and the following reconstruction mechanism，

composition operators. In the sequel，fuzzy relational
equations are covered along with a topic of a
reconstruction of fuzzy relations. In addition， the
principle of justifiable granularity，which is central to
the ensuing granular constructs is introduced.
Moreover，both a one-dimensional and multivariable
case is studied. Furthermore， G-operations are
presented 4 along with a variety of architectures（such
as G-Cartesian products，G-relational composition
operations， granular relational equations， and
granular logic networks）.

1 Generic definitions

Let A and B be two sets or fuzzy sets defined in
finite spaces X and Y，respectively，dim（X）=n，
and dim （Y） =m. They are described by
characteristic functions （sets） or membership
functions （fuzzy sets）. In what follows， the
fundamental definitions and constructs forming a
backbone of relational calculus is briefly recalled.
Interestingly，these entities are the same for sets and
fuzzy sets meaning that the definitions put forward
apply to the same extent to sets and fuzzy sets.
1. 1 Cartesian product and projection
operations

Relations and fuzzy relations are cornerstones
when describing and processing relationships existing
among real-world objects.

Cartesian product
A Cartesian product of A and B，A× B，is a

relation （fuzzy relation） described by their
characteristic or membership functions［2，8-9］

（A×B）（x，y）=min（A（x），B（y））
x∈X，y∈Y （1）

For fuzzy sets， the minimum operation is
replaced by any t-norm（A×B）（x，y）=A（x）t B（y）. Of
course，if A and B are sets，all t-norms return the
same result.

To focus attention，relations defined over two
spaces are considered. However，the constructs are
readily extended to multidimensional situations. A
two-dimensional fuzzy relation R is defined over the
Cartesian product X×Y. The well-known definition
of projection is presented as

Projection of fuzzy relation
The projections of R on X and Y，respectively，

are defined as
projXR（x）=supyR（x，y） （2）

and
projYR（y）=supxR（x，y） （3）

The result of projection is a fuzzy set. From the
computational perspective，it is worth noting that the
result of projection is determined by the maximal
value of the relation across one argument for the
second one being fixed. In this way， this is an
optimistic view：the membership values of R depend
upon the extreme value of the slice of R reported
along the x or y coordinate.

Reconstruction
The results of projection of R can be used to

reconstruct the original fuzzy relation. This is a
typical example in image processing when an original
3D object has to be reconstructed in an efficient way
based on their projections.

The common way of realizing reconstruction is
to take a Cartesian product of the projection results，
say A and B and compute their Cartesian product. If
R is an image， it is apparent that the projection
operation returns a result based on the maximal value
of R for a value of one argument fixed，see Fig. 1.

There is no guarantee that A×B always returns
R. This problem will be expounded later on.
1. 2 Composition operators

The composition operators that commonly
discussed in relational calculus involve a sup-min
（max-min） and inf-max （min-max） operations.
Given a fuzzy set A in X and a fuzzy relation R，these
compositions return another fuzzy set B in Y with the
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following membership function
sup-min composition
B =A∘ R，B（y）= supx［min（A（x），R（x，y）］

（4）
inf-max composition
B = A□ R，B（y）=

infx［max（A（x），R（x，y）］ （5）
The apparent generalizations concern the use of

triangular norms and conforms in the realization of the
composition operators

sup-t（max-t）
B（y）=supx［A（x）tR（x，y）］ （6）

inf-s（min-s）
B（y）=infx［A（x）sR（x，y）］ （7）

Where t stands for t-norm and s denotes some t-
conorm. Finally，the composition operation could be
further generalized into s-t and t-s composition which
are read as

s-t
B（y）= Sx［A（x）tR（x，y］ （8）

t-s
B（y）= Tx［A（x）sR（x，y］ （9）

It is worth noting that if A is an overall space，
A（x）=1，then the composition operator returns the
projection of R.
1. 3 Logic aggregation of many fuzzy sets

t-norms and t-conorms are commonly used in the
realization of logic aggregation. The or operation of
fuzzy sets defined in the same space A1，A2，. . .，Ac

is applied to the individual membership grades A1（x）
A2（x）. . . An（x）returningA1（x）sA2（x）s. . . sAn（x）. For
the operation，one considers any t-norm and the
results becomes A1（x） tA2（x）t. . . tAn（x）. One
could note that depending on the t-norm being used，
the largest and smallest membership grades of the
results are bounded

or：maximum < A1（x）sA2（x）s. . . sAn（x）<
drastic sum

and
and：drastic product<A1（x）tA2（x）t. . . tAn（x）<

minimum.
If the number of arguments increases，the result

tends to zero（and operation）or 1（or operation）.
1. 4 Fuzzy relational equations

Fuzzy relational equations have been studied
from the seventies ［1-2，10-11］ with a significant progress
reported over the decades ［12-13］. These equations are
directly based on the composition operators studied in
Section 2. 2. The two expressions（4）and（5）could
be sought as equations with regard to A and R being
streated as unknown. More specifically，there are
two key types of equations

– estimation problem： Given A and B，
determine R

–inverse problem：Given R and B，determine A
For the sup-min and inf-min composition

operators， the solutions are well-known ［1-2］.
Equations with sup-t and inf-t compositions are also
discussed in the context of their analytical
solutions［11］. It is also shown that if the solution set is
nonempty，the largest（smallest） solutions can be
determined. Likewise， the solutions could be
determined for the sup-t and inf-s compositions.
However， the equations with the s-t and t-s
compositions cannot be processed in a general way.
Likewise，if the solution sets are empty，one has to
resort to approximate solutions obtained by invoking
optimization methods，say gradient-based techniques.

The estimation problem can be generalized by
considering a system of fuzzy relational equations

A1 ∘R= B1，A2 ∘R= B2，. . .，Ac ∘R= Bc
1. 5 Reconstruction of fuzzy relations -a
parametric augmentation

The previous way of carrying out projection is
generalized in the form of the procedure where the s-t
composition is introduced and some parametric
flexibility are brought in to the calculations

A（x）= Sx［w（y）tR（x，y）］ （10）
B（y）= Sy［v（x）tR（x，y）］ （11）

In case of finite spaces X and Y，w and v are

Fig. 1 Projection of relation on x and y coordinates
along with the reconstruction result
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vectors of weights assuming values in［0，1］. Their
objective is to calibrate an impact of individual
elements of X and Y when determining the respective
contributions to the generated results.

As to the reconstruction， it is augmented by
weights f and g which yield

R~（x，y）=［A（x）sf（x）］t［B（y）sg（y）］ （12）
The overall scheme of projection and

reconstruction is visualized in Fig. 2.

As a matter of fact，the expressions（10）–（12）
are examples of logic neurons： the projection is
completed in terms of the two OR neurons whereas
the reconstruction is conducted with the aid of the
AND neuron.

The selection of the values of the weights w，v，
f， and g is completed by solving the following
optimization problem，

minw，v，f，g || R– R~|| （13）
where ||. || is a certain distance function.

2 Principleofjustifiablegranularity

Building information granules on a basis of
experimental data constitutes a pivotal item on the
agenda of granular computing with far-reaching
implications on the design methodology of granular
models and ensuing applications. Clustering and
fuzzy clustering ［14］ are often used as a vehicle to
produce information granules. The principle of
justifiable granularity rooted in the compelling
intuitively appealing arguments guides a construction
of an information granule ［15-17］. In a nutshell， a
resulting information granule becomes a
summarization of data （viz. the available
experimental evidence）. The underlying intuitive

rationale behind the principle is to deliver a concise
and abstract characterization of the data such that the
two requirements are addressed，i. e.，the produced
granule is justified in light of the available
experimental data，and the granule comes with a well-
defined semantics meaning that it can be easily
interpreted and becomes distinguishable from the
others.

Formally speaking， these two intuitively
appealing criteria are expressed by the criterion of
coverage and the criterion of specificity. Coverage
states how much data are positioned behind the
constructed information granule. Rephrase it
differently，coverage quantifies an extent to which
information granule is supported by available
experimental evidence. Specificity， on the other
hand，is concerned with the semantics of information
granule stressing the semantics （meaning） of the
granule.

In what follows， the developments of the
principle of justifiable granularity is elaborated on by
starting with a generic version. The main
assumptions and the features of the environment in
which information granules are being formed are also
summarized in a concise manner. Information
granules are formalized in an interval format so that an
interval［a，b］ is constructed. The interval type of
information granule is explored for illustrative
purposes；however the method is far more general
and the principle can be applied to different granular
and numeric experimental data and produce
information granules formalized in terms fuzzy sets，
rough sets and others.
2. 1 One-dimensional data

One-dimensional real data x1，x2，… ，xN are
considered. The bounds of the data are xmin and xmax；
xmin= arg mink xk，xmax = arg maxk xk.

The coverage measure is associated with a count
of the number of data embraced by A，namely

cov（A）= 1
N
card }{xk| xk∈A } （14）

Where card（.）denotes the cardinality of A，viz. the
number（count）of elements xk belonging（covered）
to A. In essence，coverage has a visible probabilistic

Fig. 2 Realization of reconstruction of fuzzy
relation
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flavor. The specificity of A，sp（A），is regarded as a
decreasing function g of the size （length） of
information granule. If the granule is composed of a
single element，sp（A）attains the highest value and
returns 1. If A is included in some other information
granule B，then sp（A）> sp（B）. In a limit case，if A
is an entire space， sp（A） returns zero. For an
interval-valued information granule A =［a，b］，a
simple implementation of specificity with g being a
linearly decreasing function comes as

sp（A）=g（length（A））=1- ||b- a
range

（15）

where range is defined as range = xmax-xmin.
The criteria of coverage and specificity are in an

obvious conflicting relationship. The increase in the
values of coverage implies lower values of specificity
and vice versa. If it is wished to maximize both
criteria，a sound compromise has to be reached. Let
us introduce the following product of the criteria

V= cov（A）sp（A） （16）
The maximization of the performance index V

gives rise to information granule where some trade-
offs between coverage and specificity are reached.
The design of information granule is accomplished by
maximizing the above product of coverage and
specificity. Formally speaking， consider that an
information granule is described by a vector of
parameters p，V（p）， the principle of justifiable
granularity yields an information granule that
maximizes V，popt = arg pV（p）.

To maximize the index V through the adjusting
the parameters of the information granule， two
different strategies are encountered：

（1） A two-phase development is considered.
First a numeric representative （mean， median，
mode，etc.）of the available data is determined. It
can be regarded as their initial representation. Next，
the parameters of the information granule are
optimized by maximizing V. For instance，in case of
an interval，one has two bounds（a and b） to be
determined. These two parameters are determined
separately，viz. a and b are formed by maximizingV（a）
and V（b）. The data used in the maximization of V（b）
involves the data larger than the numeric

representative. Likewise，V（a） is optimized on a
basis of the data lower than this representative.

（2） A single-phase procedure in which all
parameters of information granule are determined at
the same time. In the above case，the values of a and
b are simultaneously optimized. In comparison with
the previous method，here the location of the interval
is not biased towards one of the“anchor”points such
as the mean or median. This approach yields more
flexibility and finally results in possibly higher values
of V（p）.

As an example， let us consider 500 data
governed by a normal distribution N（0，1）. The
range is［−3. 43，3. 00］.

The use of the principle of justifiable granularity
where both bounds are optimized at the same time
leads to the interval information granule［−0. 896，
1. 261］. The obtained product of the coverage and
specificity criteria is 0. 730.

Proceeding with the separate optimization of the
bounds and assuming a numeric representative to be
themean value（0. 047），the optimal interval［−0. 983，
0. 846］ is obtained and the optimized performance
index is 0. 654. If the numeric representative is taken
as the median（0. 654），the numeric representative is
practically the same as before，［−0. 987，0. 847］
resulting in the same value of the performance index.

Considering the 500 data generated by the
Laplace distribution L（0，1），the obtained results are

– simultaneous optimization of the bounds ：
［−1. 876，1. 497］，performance is 0. 822

–separate optimization of the bounds，mean as
the representative：［−1. 493，1. 498］，performance
0. 774

– separate optimization of the bounds，median
as the representative：［−1. 480，1. 473］，performance
0. 768

For the Cauchy distribution（again 500 data），

the obtained results are
– simultaneous optimization of the bounds：

［−10. 123，14. 808］，performance is 0. 970
–separate optimization of the bounds，mean as

the representative：［−5. 639，21. 847］
performance 0. 958
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– separate optimization of the bounds，median
as the representative：［−5. 943，14. 794］，performance
0. 952

If fuzzy sets are considered as information
granules，the definitions of coverage and specificity
are reformulated to take into account the notion of
partial membership. Here the fundamental
representation theorem is invoked，stating that any
fuzzy set can be represented as a family of its α -cuts
［8，15］，namely

A（x）=supα∈[ 0，1 ] [ min (α，Aα ( x ) ) ] （17）
where

Aα ( x )={ }x |A( x )≥α （18）
The supremum（sup）operation is taken over all

values of α. In virtue of the representation theorem，

any fuzzy set represented as a collection of sets is
obtained.

Having this family of α-cuts in mind and
considering Eqs. （14） and （15） as a point of
departure for constructs of sets （intervals）， the
following relationships are obtained.

–coverage

cov（A）=∫
X
A (x) dx/N （19）

where X is a space over which A is defined.
Moreover，one assumes that A can be integrated.
The discrete version of the coverage expression
comes in the form of the sum of membership degrees.
If each data point is associated with some weightw（x），
the calculations of the coverage involve these values

cov（A）=∫
X
w (x) A (x) dx/∫

X
w (x) dx （20）

–specificity

sp（A）=∫
0

1
sp(Aα ) dα （21）

2. 2 Multivariable data
Let us consider multivariable data X =｛x1，

x2，. . .，xN｝where xk ∈Rn. It is assumed that the data
are normalized to the unit hypercube. The process is
carried out in the same way as described in the first
option. It is assumed that some numeric
representative prototype of X associated with the data
is given. Denote it by v. It could be also produced by
running some clustering or fuzzy clustering technique.

Around the numeric prototype v，one spans an
information granule G，G=（v，ρ）whose optimal
size （radius） is obtained as the result of the
maximization of the already introduced criterion，
namely

ρi，opt=arg max ρi [ cov {Vi ) sp(Vi ) ] （22）
where

cov（Vi）=
1
N
card｛xk | ||xk-V|| ≤ n ρ｝ （23）

As before， the specificity is expressed as a
linearly decreasing function of ρ

sp（G）=1- ρ （24）
The geometry of information granule depends

upon the form of the distance function. For instance，
the Tchebyshev distance implies a hyperbox shape of
the granules.

When using the fuzzy clustering method，the
data X come with their weights associated with the
individual elements of X， say （x1，w1），（x2，
w2），. . .，（xN，wN），where wk ∈［0，1］serves as a
degree of membership of the kth data point. The
coverage criterion is modified to reflect the existing
weights. Introduce the following set

Ω=｛xk | ||xk-v|| ≤ nρ｝ （25）
Then the coverage is expressed in the form

cov（G）= 1
N∑xk∈Ω

wk （26）

The specificity measure is defined as presented
before.

3 G-operations

Projections and composition operators are
examples of multi-argument aggregation operators.
Many input variables give rise to a single result. In
this paper， it is advocated that the result of
aggregation of numeric input arguments is an
information granule which helps incorporate the
diversity of input arguments and copes with the
descriptive aspect of the result.

The classic definition of projection， although
conceptually sound，is quite limited when it comes to
the incorporation of data distribution. Both in Eq.
（2） and（3），the result hinges upon the maximal

585



同 济 大 学 学 报（自 然 科 学 版） 第 50卷

value of the characteristic or membership function.
For Boolean relations，the result is only either 0 or 1
irrespective of the distribution of values of the input
variables. For fuzzy relation， the result is the
maximal membership grade. It is a bit counter-
intuitive as the projections of very different rows of R
yields the same result. The use of any t-conorm gives
a better insight as the result captures the membership
values of the fuzzy relation for some fixed x，yet it
does not reflect the nature（distribution）of the data.

In sum，it could be intuitive to anticipate that the
result of projection has to accommodate the diversity
of the entries of R forming any row or column and
become an information granule of type-2. The result
of any operation on fuzzy sets involving many
arguments should reflect the existing diversity and
return an information granule whose localization and
specificity is impacted by the existing data. This
gives rise to a slew of constructs such as projection
（and the associated reconstruction process），granular
composition operators， and granular relational
equations. It is also shown that this leads to a new
class of granular logic networks built on a basis of G-

AND and G-OR neurons.
Conceptually， the results of processing

individual inputs，say f（x1），f（x2），. . .，f（xn）where
f is a certain operator，say max，min，t-norm，t-
conorm，etc. are considered en block and regarded as
a certain information granule. In a concise way，the
process is described as T= G（ f（｛x1，x2，. . . ，xN｝）
with G denoting a procedure of the principle of
justifiable granularity returning an interval information
granule T=［t−，t+］on a basis of f（x1），f（x2），. . .，
f（xn）.
3. 1 G-Cartesian product and a reconstruction
problem

G-Cartesian product
Recall that A（y）= projxR = supxR（x，y）. The

G-projxR returns an information granule A~ with the
bounds［a−（x），a+（x）］where these bounds are
produced by the principle of justifiable granularity
being applied to the collection of membership grades
｛R（x1，y），R（x2，y），. . .，R（xn，y）｝so some y fixed.

Likewise B~ is an information granule［b−（y），

b+（y）］arising through the formation of information
granule which emerges after processing ｛ R（x，
y1），R（x，y2），. . .，R（x，ym）｝

Reconstruction
The reconstruction， as in case of type-1

information granules（see Section 4），is realized by
taking a Cartesian product of A and B. Here，
however，A and B are type-2 information granules.
Thus R itself is a type-2 fuzzy relation R~ with the
entries ［a−（x）tb−（y）， a+（x）tb+（y）］. An
interesting question arises as to the quality of the
obtained reconstruction. As R and R~ are of two
different types，the performance of reconstruction is
evaluated by using the measures of coverage and
specificity. Those are the same which were studied
with regard to the principle of justifiable granularity.
The coverage is expressed in the form

- -----cov= 1
nm∑x，y

cov (R (x，y)，R~(x，y) )（27）

and
-sp= 1

nm∑x，y
(1-R~ ( x，y ) ) （28）

The coverage operator，cov（a，［b，c］）returns 1
once a is included in the interval ［b，c］. The
performance of reconstruction is expressed as the
product - -----cov-sp，the higher the value of this index，the
better the performance of the reconstructed fuzzy
relation.
3. 2 Granular relational composition operators

The composition operators discussed in Section
2. 2 are examples of multi-argument aggregation
operations. the operation of G-min，G-max，G-t，
and G-s are introduced as analogous to the discussed
compositions in the following way

G-min and G-t compositions
B（y）= G-minx（A（x），R（x，y）） （29）
B（y）= G-tx（A（x），R（x，y）） （30）

The principle of justifiable granularity is applied
to sets｛min（A（x1），R（x1，y）），min（A（x2），R（x2，y）），. . .，
min（A（xn），R（xn，y））｝and｛A（x1）tR（x1，y），A（x2）tR（x2，
y），. . .，A（xn）tR（xn，y）｝，respectively.

For the inf-min and inf-s，one has
B（y）= G-maxx（A（x），R（x，y）） （31）
B（y）= G-sx（A（x），R（x，y）） （32）
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With the principle of justifiable granularity
applied to sets

｛max（A（x1），R（x1，y）），max（A（x2），R（x2，
y）），. . .，max（A（xn），R（xn，y））｝ （33）
｛A（x1）sR（x1，y），A（x2）sR（x2，y），. . .，A（xn）sR（xn，y）｝

（34）
3. 3 Granular fuzzy relational equations

The composition operations discussed above，
both in terms of their numeric and granular versions，
are considered in the generalized versions of relational
equations，G-relational equations. As before，there
are two types of problems

Estimation problem. Given are fuzzy sets A and
B，determine R. In virtue of the G-max or G-t
composition，the result of the composition of A and R
is B~，B~（y）=G-min（A（x），R（x，y））or B~（y）=
G-t（A（x），R（x，y））. The unknown fuzzy relation R
is optimized in a way the product of coverage and
specificity of B~，- -----cov-sp are maximized where

- -----cov= 1
m∑y

cov (B ( y)，B~( y) ) （35）

and
-sp= 1

m∑y
(1-B~ ( y ) ) （36）

The solution（optimal fuzzy relation）Ropt is the
one that maximizes the product of the average
coverage and specificity，Ropt =arg maxR（- -----cov-sp )

For the system of equations where pairs of data
（Ak，Bk），k =1，2，. . .，N are provided， the
formulation of the problem is the same as shown
above with the coverage and specificity expressed
over all data meaning that

- -----cov= 1
Nm∑k，y

cov (Bk( y)，B~k ( y) ) （37）

and
-sp= 1

Nm∑k，y
(1-B~k ( y ) ) （38）

In the estimation problem，the data in the form
（Ak，B*k）could be encountered where B*k is a type-2
information granule. In this case，the performance
index quantifies how closely B*k and B~k are. A certain
performance measure P is expressed in the form

P= 1
N∑k

card (B*
k∩B~k )

card (B*
k∪B~k )

（39）

where card（.） denotes the cardinality of the

information granules.
Inverse problem
Here given are R and B and A has to be

determined. The formulation of the optimization
problem in which A is searched for where G-min or G-

t applied to A and R returns B~ for which the
coverage and specificity are calculated in the form
given by Eqs.（35）and（36）.

The solutions to the estimation and inverse
problems cannot be obtained analytically. A sound
alternative is to involve some population-based
optimization methods such as PSO（Particle Swarm
Optimization） ， GA（genetic algorithms） ， DE
（differential evolution） or alike and regard the
product of coverage and specificity as a suitable
fitness function.
3. 4 Granular logic neurons and granular
neural networks

The composition operators form the computing
setting of granular neurons. The G-t composition
gives rise to a G-OR neurons and G-s composition
produces a G-AND neuron；refer to Fig. 3.

In essence，the granular neurons are realized by
G-t or G-s composition operators returning a type-2
information granule Y. The weights play an
important role by endowing the neurons by some
parametric flexibility which is central to the realization
of the learning capabilities of the neurons.

G-s composition：if all weights are equal to 1，
the original data are used in the principle of justifiable
granularity. If the weights are getting lower then the
population of inputs is shifted towards lower values
and the resulting information granule is moved
towards the lower end of the unit interval. For the G-

AND neuron， if all weights are set to zero，the
obtained information granule is built on a basis of the
original data. If the weights are getting larger，the
obtained information granule migrates towards higher
end of the space. Note that in both classes of

Fig. 3 Granular logic neurons
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neurons， the numeric inputs produce a granular
output Y.

The generalization of the logic processor
discussed in Refs.［9，15］is a two-layer architecture
where the first layer is composed of G-AND followed
by the output layer composed of G-OR units. A
multiple input-single output topology is illustrated in
Fig. 4.

The outputs of G-AND neurons are information
granules. Denote them by Z1，Z2，. . .，Zm. They are
processed by the G-OR neuron. The lower and upper
bounds of Zis are processed separately，which at the
end gives rise to information granule of type-2（the
level of type of information granule has been
elevated）. For the purpose of learning，one can treat
them as information granule of type-1 use in the
performance index the bounds of the granule as
depicted in Fig. 5.

To realize learning of the network， two
components have to be clearly identified，namely a
suitable performance index and a learning algorithm.
To focus on this discussion，consider that the learning
data are given as a family of input-output pairs（xk，

targetk），k=1，2，. . .，N with n input variables and a
single output. With regard to the first one，because
numeric data are confronted with the information
granule，the optimization process has to be guided by
a suitable performance index that takes into account
the diverse nature of data and results of the model.

As we encounter type-2 information granules，
two optimization performance indexes are considered.
There are A+ =［y--k y++k ] and A- =[ y-+k ，y+-k ]
where A-⊂A+.

The optimization problem is formulated for A+

and A- in the following form
- -----cov= 1

N∑k
cov ( targetk，[ y--k ，y++k ] ) （40）

and
-sp= 1

N∑k
sp( [ y--k ，y++k ] ) （41）

V1= - -----cov-sp （42）
and

- -----cov= 1
N∑k

cov ( targetk，[ y-+k ，y+-k ] ) （43）

-sp= 1
N∑k

sp( [ y-+k ，y+-k ] ) （44）

V2 =
- -----cov-sp （45）

The solution is wopt = arg maxw V1 or wopt =
arg maxw V2 where w is a collection of weights of the
G-neurons forming the network.

Given the complexity of the optimized
performance index whose gradient with respect to the
parameters of the network is difficult to determine，a
feasible optimization vehicle comes from a family of
population-based optimization techniques.

4 Conclusions

This study develops a new perspective and
provides algorithmic environment of data augmented
constructs of relational computing. This enhanced the
current consideration from a purely prescriptive
ground to embrace the descriptive aspect involving
data content and data characteristics. It has been
shown that multivariable constructs （projections，
compositions，etc.）give rise to results of elevated
aspect of information granularity. In particular，the
arguments that are membership grades lead to the

Fig. 4 Architecture of G logic processor

Fig. 5 Processing in G logic processor(Stressed is
an elevated level of information granules
obtained when moving along successive
layers of the architecture)
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granular result， say， an interval of possible
membership grades. It can be stated that there is an
interesting effect of elevation of type of information
granules： an aggregation （composition） of type-p
information granules produces a single type（p+1）
information granule. Granular architectures have been
introduced， referred to as G-constructs， say G-

projection，G-composition，among others. The idea
of fuzzy relational equations is generalized to G-

relational equations. As a follow-up of weighted
composition operations，a family of granular neurons
and neural networks has been established that focuses
on numeric processing producing granular results.

While the study opens up a new avenue of
research in fuzzy sets，relational calculus，there are a
number of promising directions worth pursuing.
First， all investigations have been conducted for
interval information granules. However， the
framework proposed here is for more general and as
such deserves more studies. The solutions to the G-

relational equations are demanding given the
underlying processing thus a way of their
determination calls for more thorough investigations
as to efficiency of optimization methods.
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