文章编号: 0253-374X(2022)05-0652-15

DOI: 10. 11908/j. issn. 0253-374x. 21344

高强超高延性混凝土梁弯剪性能 理论分析与数值模拟

蔡自伟,邓博予,张智,陆洲导,李凌志,俞可权 (同济大学土木工程学院,上海 200092)

摘要:开展了14根高强超高延性混凝土(high-strength engineered cementitious composite, HS-ECC)梁的四点弯曲试验,研究了混凝土类型、纵筋配筋率和是否配置箍筋三因素对配筋梁弯剪性能的影响。基于平截面假定和材料本构关系,计算了配筋HS-ECC梁的受弯承载力。基于国内外规范,计算了无腹筋HS-ECC梁的受剪承载力。最后,采用Abaqus软件建立了HS-ECC梁的有限元模型。结果表明:有腹筋梁均为受弯破坏,随着纵筋配筋率增大,试件极限荷载和刚度逐渐增大,而延性未显著降低,配筋HS-ECC梁较普通混凝土梁具有更优异的裂缝分散能力和抗弯性能;无腹筋HS-ECC梁的破坏模式随配筋率增大由受弯破坏转变为受剪破坏,梁受剪承载力和刚度增大,但延性逐渐降低;配筋HS-ECC梁受弯承载力的计算结果与试验值吻合较好;HS-ECC梁有限元模型可有效模拟试件的荷载-位移曲线。

关键词: 高强超高延性混凝土(HS-ECC); 弯剪性能; 理论分析; 有限元模型

中图分类号: TU375.1

文献标志码: A

Theoretical Analysis and Numerical Simulation of Flexural and Shear Behavior for High-strength Engineered Cementitious Composite Beams

CAI Ziwei, DENG Boyu, ZHANG Zhi, LU Zhoudao, LI Lingzhi, YU Kequan

(College of Civil Engineering, Tongji University, Shanghai 200092, China)

Abstract: Four-point flexural tests were carried out on 14 reinforced high-strength engineered cementitious composite (HS-ECC) beams. The effects of concrete types, reinforcement ratios of longitudinal bars and stirrups on the flexural and shear behaviors of reinforced beams were explored. Then, the bending capacitity of the

HS-ECC beams with stirrups was calculated based on the plane-section assumption and material constitutive models, and the shear capacitiy of HS-ECC beams without stirrups was calculated according to the specifications at home and abroad. Finally, the finite element model of HS-ECC beams was established via Abaqus. It is shown that: all the HS-ECC specimens with stirrups are flexural failure; the ultimate flexural load and the stiffness of HS-ECC beams increase with the reinforcement ratio, but the ductility remains stable; HS-ECC beams with stirrups demonstrate superior flexural performance and crack distribution capacity compared with conventional concrete beams; the failure modes of HS-ECC beams without stirrups vary from flexural failure to shear failure with the increasing reinforcement ratio; the higher the reinforcement ratio of HS-ECC beams, the higher the shear capacity and stiffness, while the lower the ductility; calculation results of the bending capacity of the HS-ECC beams are in good agreement with experimental values; the load-displacement curves of the HS-ECC beams are simulated with the finite element model effectively.

Key words: high-strength engineered cementitious composite(HS-ECC); flexural and shear behaviors; theoretical analysis; finite element model

超高延性混凝土 (engineered cementitious composite, ECC)是根据微观力学原理由短切高性能纤维增强水泥基材料制备而成^[1]。ECC具有较高的拉伸强度、较好的拉应变硬化能力和多裂缝开裂行为,极限拉应变可达普通混凝土的几百倍,微细裂缝宽度小于150 μm。基于优异的力学和耐久性能,ECC在结构抗震^[2]、结构修复和加固^[3]、抗爆^[4]和抗

收稿日期: 2021-07-29

基金项目: 国家自然科学基金(51778497,51778496)

第一作者: 蔡自伟(1991—),男,博士生,主要研究方向为超高性能混凝土。E-mail: caiziwei@tongji. edu. cn

通信作者: 俞可权(1986—),男,工学博士,主要研究方向为超高延性混凝土。E-mail: 12yukequan@tongji. edu. cn

火[5]等工程中得到广泛应用。

目前常规强度ECC主要由聚乙烯醇(PVA)纤维 制备而成,PVA-ECC稳态拉伸裂缝宽度通常小于100 μm,极限拉应变通常介于3%~5%之间^[6-7]。然而,由 于PVA属亲水性纤维,PVA-ECC制备时需限制纤维 与基体间的黏结力以免纤维过早拉断,而且配比对原 材料敏感度高,因此所得PVA-ECC抗压强度不超过 60 MPa^[6-7]。PVA-ECC的弹性模量通常为其对应强 度混凝土的60%~70%,作为结构构件材料应用时,难 以满足正常使用极限状态下构件的挠度限值要求。为 进一步提升ECC的拉压强度、弹性模量以及拉伸延性, 推动ECC在结构构件中的广泛应用,研究人员尝试采 用超高分子量聚乙烯(ultra-high molecular weight polyethylene, UHMWPE)纤维制备高强 ECC^[8-9]。 UHMWPE纤维具有高弹性模量、高抗拉强度和天然 憎水性,可制备圆柱体抗压强度为40~120 MPa、抗拉 强度高达16 MPa、极限拉应变不小于8%、弹性模量达 到 40 GPa 的 高强 ECC (high-strength engineered cementitious composite, HS-ECC)[10-11], HS-ECC的结 构应用也因此备受关注[12-13]。

由于混凝土自身脆性以及抗拉强度和拉应变低,普通钢筋混凝土梁通常带裂缝工作,较大的裂缝宽度易引发钢筋腐蚀,达到极限荷载时受压区混凝土压溃。已有研究人员将ECC应用于配筋受弯梁中,并探讨了受弯承载力计算模型[14]、弯曲挠度计算方法[15]、试件的受力响应[16]以及配筋率和ECC替代率对ECC-混凝土复合梁受弯性能的影响[17]。然而,前述研究中ECC的弹性模量不超过20 GPa,导致受弯构件在正常使用极限状态下的挠度较大。HS-ECC的弹性模量高达40 GPa,可有效控制构件变形。此外,HS-ECC兼具高拉伸强度与高延性,具有部分甚至全部取代纵向钢筋的能力,其承载力与变形的理论模型也需进一步推导。

对于ECC梁的抗剪性能,研究人员提出了配筋ECC梁受剪承载力的计算方法,探讨了不同配筋率下无腹筋ECC梁以及不同配箍率、纤维掺量、剪跨比下配箍ECC梁的受剪性能变化规律[18-19],建立了基于拉压杆模型[20]或修正压力场[21]的配筋ECC梁抗剪承载力理论模型,并与规范中的计算方法进行了对比。鉴于HS-ECC优异的拉压强度、拉伸和压缩变形能力,将HS-ECC用于受弯构件的剪跨区以抵抗剪切作用,可降低配箍率,同时改善脆性的剪切破坏模式。目前关于配筋HS-ECC梁受剪性能的研究尚未开展,HS-ECC亦有望进一步提升构件的抗剪性能。

目前,由于成本较高、施工复杂、设计理论不完善等问题,HS-ECC结构应用仍受到限制,已有研究人员尝试通过降低纤维掺量或将ECC用于构件关键位置来解决这些问题[17]。基于前期试验结果[12],采用理论分析和有限元方法开展了配筋HS-ECC梁的弯剪性能研究,分析了混凝土类型、配筋率和是否配置箍筋三因素对配筋HS-ECC梁受弯和受剪性能的影响;得到了试件的破坏模式和荷载-位移曲线,并利用平截面假定和材料本构关系推导了受弯承载力以及弯矩-曲率和荷载-应变关系;计算了试件的受剪承载力。基于Abaqus软件建立了配筋HS-ECC梁的有限元模型,模拟了配筋HS-ECC梁的受弯和受剪破坏过程。

1 试验概况

试件的几何尺寸和配筋分别如图1和表1所示。 共制作14根梁,无配筋HS-ECC梁(NU)2根,有配筋钢筋混凝土梁(RC)6根,有配筋HS-ECC梁(RU)6根,其中只配纵筋的钢筋混凝土梁与HS-ECC梁(NS)各3根。梁的截面尺寸为100 mm×100 mm,总长度为500 mm。研究因素为混凝土类型、纵筋配筋率和是否配置箍筋。纵筋配筋率分别为0.69%、1.86%和2.94%。纵筋保护层厚度为15 mm。

表 1 试件的几何尺寸和配筋

Tab. 1 Geometric parameters and reinforcement of specimens

) N/II / H □	MINT I Word	haka haka	371 → 411 A-A-	====================================
试件编号	混凝土类型	箍筋	梁底纵筋	配筋率/%
NU1	HS-ECC			
NU2	HS-ECC			
RC2Ф6	普通混凝土	$\Phi 6@50$	2Ф6	0.69
RC3Ф8	普通混凝土	$\Phi 6@50$	3Ф8	1.86
RC3Ф10	普通混凝土	$\Phi 6@50$	3Ф10	2.94
RU2Φ6	HS-ECC	$\Phi 6@50$	2Ф6	0.69
RU3Φ8	HS-ECC	$\Phi 6@50$	3Ф8	1.86
RU3Φ10	HS-ECC	$\Phi 6@50$	3Ф10	2.94
RC2Ф6NS	普通混凝土		2Ф6	0.69
RC3Ф8NS	普通混凝土		3Ф8	1.86
RC3Φ10NS	普通混凝土		3Ф10	2.94
RU2Ф6NS	HS-ECC		2Ф6	0.69
RU3Ф8NS	HS-ECC		3Ф8	1.86
RU3Φ10NS	HS-ECC		3Ф10	2.94

试件加载装置和测点布置如图2所示。采用电液伺服试验机加载,试验机量程为500 kN。加载方式为四点弯曲加载,试件净跨度为450 mm,纯弯段和剪跨区均为150 mm。采用位移控制方式,加载速率为1 mm·min⁻¹。共采用5个位移计,分别布置于

支座、跨中和加载点,测量试件的竖向位移,同时采用数字图像相关法[5]测量试件的位移变化。

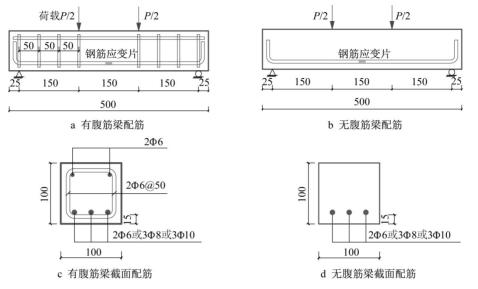


图 1 试件的几何尺寸和配筋(单位:mm)

Fig. 1 Geometric parameters and reinforcement of specimens (unit; mm)

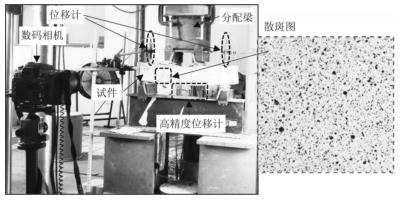


图 2 加载装置、位移测点布置和数字图像相关法

Fig. 2 Loading setup, instrumentation layout and digital image correlation method

2 试验结果与讨论

2.1 破坏模式

如图 3a 所示,试件 NU1 和 NU2 为受弯破坏,试件 破坏时纯弯段受拉区产生大量微细弯曲裂缝。对于配置箍筋和纵筋的梁,如图 3b、c 所示,钢筋混凝土梁和 HS-ECC 梁均表现为受弯破坏。试件的破坏模式类似,仅展示典型试件 RC3Φ8 和 RU3Φ8。配筋 HS-ECC 梁发挥了 HS-ECC 优异的拉伸与压缩应变能力,梁跨内底部弯曲裂缝发展充分,而顶部纯弯段 HS-ECC 仅有轻微压溃现象,配筋 HS-ECC 梁表现出优异的弯曲延性。详细试验结果参考文献[12]。对于只配置纵筋的梁,试件 RC2Φ6NS 和 RU2Φ6NS 亦为受弯破坏,其余4根梁均发生受剪破坏。如图 3e 所示,在主斜裂缝形

成前试件RU3Φ8NS有明显的多裂缝分散行为,表现 出优异的变形能力,从而将脆性剪切破坏转换为延性 剪切破坏。

2.2 荷载-跨中位移曲线

试件的荷载-跨中挠度曲线如图4所示。如图4a所示,对于受弯构件,随着配筋率增大,钢筋混凝土梁与HS-ECC梁的承载力和刚度均逐渐增大。由于跨中截面顶部HS-ECC相比普通混凝土具有更高的压缩变形能力,因此HS-ECC梁的延性并未显著降低[12]。对比相同配筋率的钢筋混凝土梁和HS-ECC梁,HS-ECC梁表现出更优异的承载力与延性性能。HS-ECC的高拉伸强度提升了构件的承载力,而高延性与多裂缝开展能力则有利于与钢筋之间的变形协调,提升构件延性。无箍筋HS-ECC梁

的受弯性能略小于配筋率为1.86%的钢筋混凝土 梁,证明了HS-ECC具备部分取代纵筋的能力。如 图4b所示,RC2Φ6NS和RU2Φ6NS均表现为受弯破 坏,这是因为此配筋率下梁的抗弯承载力仍小于抗 剪承载力。当配筋率增大到1.86%和2.94%时,梁 的受弯承载力大于受剪承载力,钢筋混凝土梁和 HS-ECC 梁均发生受剪破坏。随着配筋率的增大, 试件的承载力和刚度逐渐增大,但延性逐渐降低。 需要指出的是,受剪破坏的HS-ECC 梁仍具有与受 弯钢筋混凝土梁相当的延性[12]。

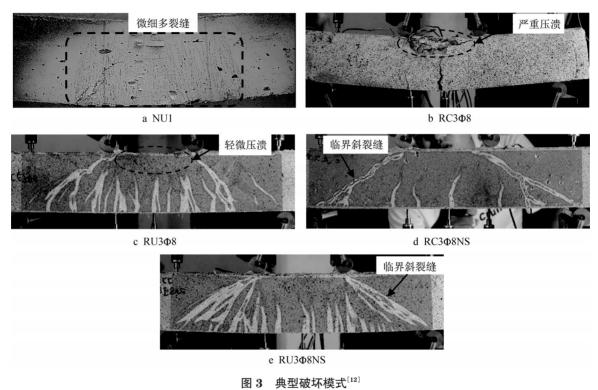


图 3 典型破坏模式 Fig. 3 Typical failure modes^[12]

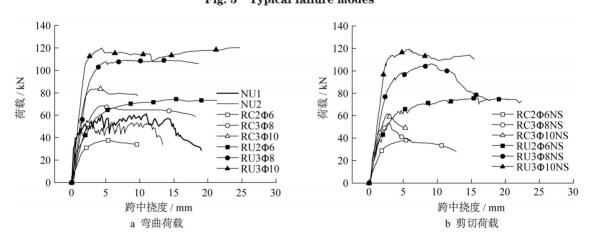


图 4 荷载-跨中挠度曲线

Fig. 4 Load-midspan deflection curves

3 受弯承载力计算模型

根据平截面假定、钢筋和HS-ECC的材料本构 关系,推导未配筋和配筋HS-ECC梁受弯截面的开 裂弯矩、屈服弯矩和极限弯矩公式,再计算试件的开 裂荷载、屈服荷载和极限荷载。

3.1 基本假定

作如下基本假定:

(1) HS-ECC 梁符合平截面假定。以试件 RU3Φ8为例,借助数字图像相关法,最终获得不同 荷载和跨中挠度下纯弯段上沿高度方向的HS-ECC水平应变分布,如图5和图6所示。可见,试件RU3Φ8纯弯段HS-ECC的水平应变基本符合平截面假定。

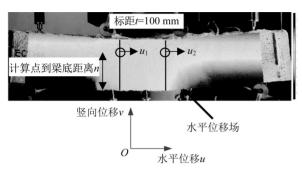


图 5 HS-ECC 梁水平位移示意图

Fig. 5 Schematic diagram of horizontal displacement of HS-ECC beams

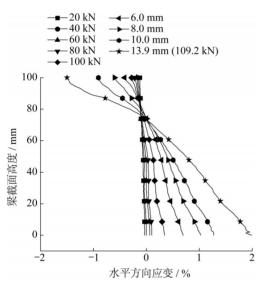


图 6 试件RU3Φ8的平截面假定验证

Fig. 6 Plain-section assumption verification for RU3Ф8

- (2)纵筋与HS-ECC共同变形。HS-ECC具有较高的基体强度和大掺量纤维,能够保证与钢筋之间的荷载传递。因此,假定钢筋和HS-ECC之间完全黏结。
- (3)在整个加载过程中,考虑拉区HS-ECC的贡献。如图 6 所示,极限荷载时配筋 HS-ECC 梁RU3Φ8 底部的最大拉应变仅达到 2%,小于 HS-ECC 材料本身的极限拉应变,表明这一假定是合理的。

3.2 材料本构关系

3.2.1 HS-ECC的理论应力-应变曲线

采用简化的二折线模型表征 HS-ECC 拉压本构,图 7a 和式(1)为 HS-ECC 的理论拉伸应力-应变曲线,图 7b 和式(2)为 HS-ECC 的理论压缩应力-应

变曲线。

$$\sigma_{t} = \begin{cases} \frac{\sigma_{tc}}{\varepsilon_{tc}} \varepsilon_{t}, & 0 \leq \varepsilon_{t} < \varepsilon_{tc} \\ \sigma_{tc} + \frac{\sigma_{tu} - \sigma_{tc}}{\varepsilon_{tu} - \varepsilon_{tc}} (\varepsilon_{t} - \varepsilon_{tc}), & \varepsilon_{tc} \leq \varepsilon_{t} \leq \varepsilon_{tu} \end{cases}$$

$$(1)$$

$$\sigma_{c} = \begin{cases} \frac{\sigma_{cp}}{\varepsilon_{cp}} \varepsilon_{c}, 0 \leqslant \varepsilon_{c} < \varepsilon_{cp} \\ \sigma_{cp} + \frac{\sigma_{cu} - \sigma_{cp}}{\varepsilon_{cu} - \varepsilon_{cp}} (\varepsilon_{c} - \varepsilon_{cp}), \varepsilon_{cp} \leqslant \varepsilon_{c} \leqslant \varepsilon_{cu} \end{cases}$$
(2)

式中: σ_{tc} 和 ε_{tc} 分别为开裂强度和开裂应变; σ_{tu} 和 ε_{tu} 分别为极限抗拉强度和极限拉应变; σ_{tp} 和 ε_{tp} 分别为峰值抗压强度和压应变; σ_{tu} 和 ε_{tu} 分别为极限压应力和压应变。

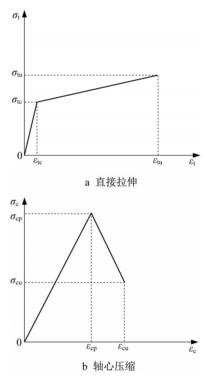


图 7 HS-ECC 的理论应力-应变曲线

Fig. 7 Theoretical stress-strain curves of HS-ECC

HS-ECC拉压本构参数如表2所示。表2中,极限拉伸强度考虑了试件尺寸效应和配筋影响折减^[22-23]。未配筋试件仅考虑尺寸效应,折减系数为0.9;配筋试件同时考虑尺寸效应和配筋影响折减,折减系数为0.7。对于受压性能,采用100 mm×100 mm×300 mm棱柱体的实测受压试验数据。需指出的是,实测的受压应力-应变曲线体现的是轴心受压性能,而跨中纯弯段受压区HS-ECC承受的是约束偏心压力,两者的本构关系存在差异,主要表现为偏压状态下峰值应力后HS-ECC的应力下降较为缓慢,在大应变下仍然保持较高的压应力。

表 2 HS-ECC的本构参数

Tab. 2 Constitutive parameters of HS-ECC

$E_{ m c}/{ m MPa}$	$\epsilon_{tc}/10^{-6}$	$\sigma_{ m tc}/{ m MPa}$	$\epsilon_{\rm tu}/10^{-6}$	$\sigma_{ m tu}/{ m MPa}$	$\epsilon_{\rm cp}/10^{-6}$	$\sigma_{\!\scriptscriptstyle m cp}/{ m MPa}$	$\epsilon_{\rm cu}/10^{-6}$	$\sigma_{ m cu}/{ m MPa}$
40 487	173	7	80 000	9.876或14.810	2 954	119.6	6 400	59.8

注:E。表示HS-ECC的弹性模量。

3.2.2 钢筋的理论应力-应变曲线

曲线。各试件理论模型中纵筋的几何和力学参数如 表3所示。

表 3 各试件理论模型中纵筋的几何和力学参数

Tab. 3 Geometric and mechanical parameters of longitudinal steel bars in the theoretical model of each specimen

试件编号	纵筋直径/mm	纵筋数量	纵筋面积 $A_{ m s}/{ m mm}^2$	弹性模量 $E_{ m s}/{ m GPa}$	屈服强度f _y /MPa
RU2Ф6	6	2	56. 52	198	500
RU3Ф8	8	3	150.72	202	500
RU3Φ10	10	3	235. 50	184	400

3.3 弯矩作用下跨中截面沿高度方向的应力-应变 分布

加载过程中应力-应变分布可分为以下4种情况:

为简化计算,对钢筋采用理想弹塑性应力-应变

- (1)弹性阶段,从开始加载到HS-ECC开裂(见图8a)。
- (2)屈服阶段,从HS-ECC开裂到梁底纵筋屈服。此时有2种情况:梁底纵筋屈服时,HS-ECC受压边缘应力尚未达到峰值压应力,如图8b所示;梁底纵筋屈服时,HS-ECC受压边缘应力介于峰值压应力和极限压应力之间,如图8c所示。
- (3)破坏阶段1,从梁底纵筋屈服到受压区顶面 HS-ECC受压达到峰值压应力(见图8b)。
- (4)破坏阶段2,从梁底纵筋屈服到受压区顶面 HS-ECC受压达到极限压应力(见图8c)。

图 8 中,x 为截面上任意一点到梁底的距离, $\varepsilon(x)$ 、 $\sigma(x)$ 分别为该点的应变和应力,b 和b 分别为试件截面宽度和高度,m 为钢筋合力作用点到梁底距离, x_c 为中性轴到梁顶面距离, x_c 一c ,c 为中性轴到梁底面距离,a 为开裂强度位置到梁底的距离, β_1 为等效矩形高度与 x_c 之比, β_1x_c 为等效矩形受压区高度, α_1 为等效矩形受压应力与峰值抗压强度 σ_{cp} 之比, ε_s 和 σ_s 分别为钢筋应变和应力。为简化计算,将受压区 HS—ECC的应力分布等效为矩形分布,根据受压区 HS—ECC的应力分布形式可分为线性阶段和双折线阶段 2 种情况。

(1)情况1,受压区线性阶段,如图8a、b所示,此时 $0 \le \epsilon_c < \epsilon_{cp}$ 。力平衡时,计算式如下所示:

$$\frac{1}{2}x_{c}\sigma_{c}b = \alpha_{1}\sigma_{cp}\beta_{1}x_{c}b \tag{3}$$

$$\sigma_{\rm c} = \frac{\sigma_{\rm cp}}{\varepsilon_{\rm cp}} \varepsilon_{\rm c} \tag{4}$$

$$\frac{1}{2}x_{c}\frac{\sigma_{cp}}{\varepsilon_{cm}}\varepsilon_{c}b = \alpha_{1}\sigma_{cp}\beta_{1}x_{c}b \tag{5}$$

$$\alpha_1 \beta_1 = \frac{\varepsilon_c}{2\varepsilon_m} \tag{6}$$

合力作用点相同时,计算式如下所示:

$$\frac{1}{3}x_{\rm c} = \frac{1}{2}\beta_1 x_{\rm c} \tag{7}$$

$$\beta_1 = \frac{2}{3} \tag{8}$$

$$\alpha_1 = \frac{\varepsilon_c}{2\varepsilon_{cn}\beta_1} = \frac{3\varepsilon_c}{4\varepsilon_{cn}} \tag{9}$$

(2)情况 2,受压区双线性阶段,此时 $\varepsilon_{cp} \leqslant \varepsilon_{c} \leqslant \varepsilon_{cu}$ 。 水平力平衡时,计算式如下所示:

$$\frac{1}{2} \frac{\epsilon_{cp}}{\epsilon_{c}} x_{c} \sigma_{cp} + \frac{\sigma_{c} + \sigma_{cp}}{2} \left(1 - \frac{\epsilon_{cp}}{\epsilon_{c}} \right) x_{c} = \beta_{1} x_{c} \alpha_{1} \sigma_{cp}$$
 (10)

$$\sigma_{c} = \sigma_{cp} + \frac{\sigma_{cu} - \sigma_{cp}}{\varepsilon_{cu} - \varepsilon_{cp}} (\varepsilon_{c} - \varepsilon_{cp})$$
 (11)

$$\alpha_{1}\beta_{1} = 1 - \frac{1}{2} \frac{\epsilon_{cp}}{\epsilon_{c}} + \frac{(\sigma_{cu} - \sigma_{cp})(\epsilon_{c} - \epsilon_{cp})^{2}}{2\sigma_{cp}(\epsilon_{cu} - \epsilon_{cp})\epsilon_{c}}$$
(12)

合力作用点相同时,计算式如下所示:

$$\frac{1}{2} \frac{\epsilon_{cp}}{\epsilon_{c}} x_{c} \sigma_{cp} \left(1 - \frac{2}{3} \frac{\epsilon_{cp}}{\epsilon_{c}} \right) x_{c} + \left(1 - \frac{\epsilon_{cp}}{\epsilon_{c}} \right) x_{c} \sigma_{c} \frac{1}{2} \left(1 - \frac{\epsilon_{cp}}{\epsilon_{c}} \right) x_{c} + \frac{1}{2} (\sigma_{cp} - \sigma_{c}) \left(1 - \frac{\epsilon_{cp}}{\epsilon_{c}} \right) x_{c} \frac{2}{3} \left(1 - \frac{\epsilon_{cp}}{\epsilon_{c}} \right) x_{c} = \alpha_{1} \sigma_{cp} \beta_{1} x_{c} \frac{1}{2} \beta_{1} x_{c} \tag{13}$$

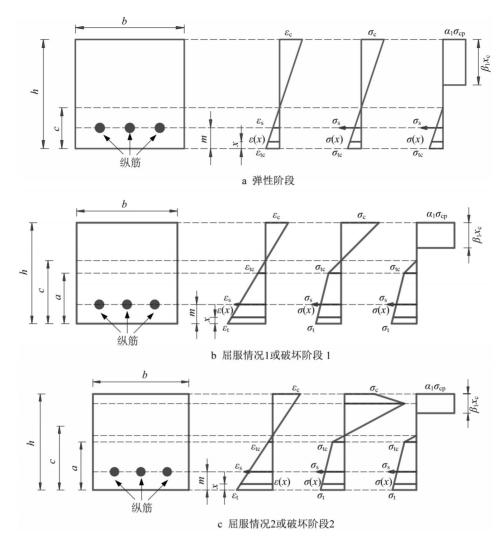


图 8 跨中截面 HS-ECC 和钢筋沿高度方向的水平应力-应变分布

Fig. 8 Horizontal stress-strian distribution of HS-ECC and steel bars along the depth of midspan cross section

$$\beta_{1} = \frac{\sigma_{cp} \left(1 - \frac{\varepsilon_{cp}}{\varepsilon_{c}} + \frac{\varepsilon_{cp}^{2}}{3\varepsilon_{c}^{2}}\right) + \frac{1}{3} \frac{\sigma_{cu} - \sigma_{cp}}{\varepsilon_{cu} - \varepsilon_{cp}} \frac{(\varepsilon_{c} - \varepsilon_{cp})^{3}}{\varepsilon_{c}^{2}}}{\sigma_{cp} \left(1 - \frac{1}{2} \frac{\varepsilon_{cp}}{\varepsilon_{c}}\right) + \frac{(\sigma_{cu} - \sigma_{cp})(\varepsilon_{c} - \varepsilon_{cp})^{2}}{2(\varepsilon_{cu} - \varepsilon_{cp})\varepsilon_{c}}} (14)$$

3.4 各阶段弯矩计算

随着受压区边缘 HS-ECC 的压应变 ε 。从零逐渐增大到 ε _{cu},根据平截面假定,得到跨中截面沿高度方向的应变分布。根据材料的本构关系,利用应变分布计算应力分布。中性轴到梁顶面的距离 x_c按力平衡计算。各临界时刻的弯矩求解过程如下所示:

(1) 开裂弯矩
$$M_{cr}(\varepsilon_{t}=\varepsilon_{tc})$$

$$\frac{\varepsilon_{\rm c}}{\varepsilon_{\rm c}} = \frac{x_{\rm c}}{h - x_{\rm c}} \tag{15}$$

$$\frac{\varepsilon_{\rm s}}{\varepsilon_{\rm tc}} = \frac{h - x_{\rm c} - m}{h - x_{\rm c}} \tag{16}$$

$$b\alpha_{1}\sigma_{cp}\beta_{1}x_{c} = E_{s}A_{s}\varepsilon_{s} + \frac{\sigma_{tc}b}{2}(h - x_{c}) \quad (17)$$

$$M_{cr} = \alpha_1 \sigma_{cp} \beta_1 x_c b \left(h - \frac{\beta_1 x_c}{2} \right) - E_s A_s \varepsilon_s m - \frac{\sigma_{tc} b}{6} (h - x_c)^2$$
(18)

(2)屈服弯矩 $M_{y}(\varepsilon_{s}=\varepsilon_{y})$

首先,假定受压区边缘HS-ECC的应变介于零和 ϵ_{cp} 之间。若计算结果与假设矛盾,则假定受压区边缘应变介于 ϵ_{cp} 和 ϵ_{cu} 之间,重新计算,如下所示:

$$\frac{\varepsilon_{\text{tc}}}{\varepsilon_{\text{v}}} = \frac{h - x_{\text{c}} - a}{h - x_{\text{c}} - m} \tag{19}$$

$$\frac{\varepsilon_{\rm t}}{\varepsilon_{\rm w}} = \frac{h - x_{\rm c}}{h - x_{\rm c} - m} \tag{20}$$

式中:ε、为纵筋屈服应变。

(16)
$$b\alpha_{1}\sigma_{cp}\beta_{1}x_{c} = f_{y}A_{s} + \frac{\sigma_{tc}b}{2}(h - x_{c} + a) + (21)$$

$$\frac{ab}{2}\frac{\sigma_{tu} - \sigma_{tc}}{\varepsilon_{tu} - \varepsilon_{tc}}(\varepsilon_{t} - \varepsilon_{tc})$$

$$M_{y} = \alpha_{1}\sigma_{cp}\beta_{1}x_{c}b\left(h - \frac{\beta_{1}x_{c}}{2}\right) - f_{y}A_{s}m - \frac{\sigma_{tc}b}{2}\left(h - x_{c} - a\right)\left(\frac{2}{3}a + \frac{1}{3}h - \frac{1}{3}x_{c}\right) - \frac{1}{2}a^{2}b\sigma_{tc} - \frac{1}{6}a^{2}b\frac{\sigma_{tu} - \sigma_{tc}}{\varepsilon_{t} - \varepsilon}\left(\varepsilon_{t} - \varepsilon_{tc}\right)$$
(22)

(3)破坏弯矩 $M_{p}(\varepsilon_{c}=\varepsilon_{cp})$ 和 $M_{u}(\varepsilon_{c}=\varepsilon_{cu})$ 当 $\varepsilon_{c}=\varepsilon_{cp}$ 时,

$$\frac{\varepsilon_{\text{tc}}}{\varepsilon_{\text{cp}}} = \frac{h - x_{\text{c}} - a}{x_{\text{c}}}$$
 (23)

$$\frac{\varepsilon_{\rm t}}{\varepsilon_{\rm cp}} = \frac{h - x_{\rm c}}{x_{\rm c}} \tag{24}$$

$$\frac{\epsilon_{\rm tc}}{\epsilon_{\rm cu}} = \frac{h - x_{\rm c} - a}{x_{\rm c}} \tag{25}$$

$$\frac{\varepsilon_{\rm t}}{\varepsilon_{\rm cu}} = \frac{h - x_{\rm c}}{x_{\rm c}} \tag{26}$$

破坏弯矩 M。和 M. 按下式计算:

$$b\alpha_{1}\sigma_{cp}\beta_{1}x_{c} = f_{y}A_{s} + \frac{\sigma_{tc}b}{2}(h - x_{c} + a) + \frac{ab}{2}\frac{\sigma_{tu} - \sigma_{tc}}{\varepsilon_{tu} - \varepsilon_{tc}}(\varepsilon_{t} - \varepsilon_{tc})$$
(27)

$$\begin{split} \frac{M_{\text{p}}}{M_{\text{u}}} &= \alpha_{1} \sigma_{\text{cp}} \beta_{1} x_{\text{c}} b \left(h - \frac{\beta_{1} x_{\text{c}}}{2} \right) - f_{\text{y}} A_{\text{s}} m - \\ & \frac{\sigma_{\text{tc}} b}{2} \left(h - x_{\text{c}} - a \right) \left(\frac{2}{3} a + \frac{1}{3} h - \frac{1}{3} x_{\text{c}} \right) - \\ & \frac{1}{2} a^{2} b \sigma_{\text{tc}} - \frac{1}{6} a^{2} b \frac{\sigma_{\text{tu}} - \sigma_{\text{tc}}}{\varepsilon_{\text{tu}} - \varepsilon_{\text{tc}}} \left(\varepsilon_{\text{t}} - \varepsilon_{\text{tc}} \right) \end{split} \tag{28}$$

表4对比了配筋HS-ECC梁的理论与试验抗弯 承载力。随着配筋率的增加,开裂、屈服和极限弯矩 均逐渐增大。配筋HS-ECC 梁的最大抗弯承载力对 应的受压边缘应变ε。通常介于ε。和ε。之间。理论预 测的初裂荷载低于试验观测到的初裂荷载,这可能 是由于直接拉伸与弯曲的HS-ECC 材料力学性能存 在差异,直接拉伸HS-ECC的开裂强度小于弯曲 HS-ECC的开裂强度。理论预测的屈服荷载与试验 观测到的屈服荷载比较接近。值得注意的是,开裂 荷载和屈服荷载的判断具有一定的主观性和数据离 散性,因此理论和试验获得的结果总会存在一定程 度的差异。无配筋 HS-ECC 梁的抗弯承载力与计算 值一致,配筋HS-ECC梁的受弯承载力计算值略大 于试验值,这可能是因为钢筋的配置影响了HS-ECC 中纤维的桥接作用。总之,该计算理论仍能比 较准确地预测配筋 HS-ECC 梁抗弯承载力。

表 4 HS-ECC 梁的试验与理论抗弯承载力

Tab. 4 Experimental and theoretical flexural capacity of HS-ECC beams

试件编号	$P_{\rm cr,exp}/{\rm kN}$	$P_{\rm y,exp}/{\rm kN}$	$P_{\rm max,exp}/{\rm kN}$	$P_{ m cr,th}/{ m kN}$	$P_{\rm y,th}/{\rm kN}$	$P_{\rm p,th}/{\rm kN}$	$P_{\rm u,th}/{ m kN}$	$P_{ m max,th}/{ m kN}$	$P_{ m max,th}/P_{ m max,exp}$
NU1和NU2	29.34	52.675	61.395	15.6		51.1	61.4	61.4	1.00
RU2Φ6	29.30	64.000	74.300	16.3	63.3	72.1	75.4	75. 4	1.01
RU3Φ8	30.00	81.900	109.200	17.5	103.6	113.3	115. 1	116.2	1.06
RU3Ф10	30.50	117.100	120.300	18.2	118.1	129.1	130.4	132. 2	1.10

注: P_{cr} 、 P_y 、 P_{max} 、 P_u 、 P_p 分别表示初裂荷载、屈服荷载、最大荷载、极限荷载、峰值压应变下荷载;下标 exp 和 th 分别表示试验和理论。

3.5 跨中截面弯矩-曲率关系和中性轴位置发展过程

图 9 为不同试件的跨中截面弯矩—曲率曲线变化过程。对比试件 RU3 Ф8 可见,本研究建议的理论计算方法(th)较准确地预测了试件的跨中截面弯矩—曲率关系(DIC),随着配筋率的增大,峰值抗弯承载力对应的跨中截面曲率逐渐减小。图 10 为中性轴高度和梁底 HS-ECC 拉应变关系。随着梁底 HS-ECC 拉应变的增加,中性轴高度逐渐增大,说明 HS-ECC 受压区域逐渐减小;峰值荷载后随着荷载的下降,中性轴高度略有下降。

3.6 荷载-应变关系、配筋率与 HS-ECC 极限拉应 变需求关系以及截面曲率延性系数

荷载和HS-ECC 受拉边缘应变关系如图 11 所示。对比RU3Φ8的试验和理论曲线,可知理论计算

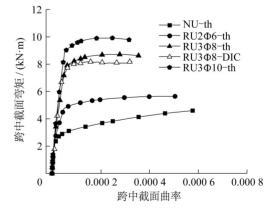


图 9 跨中截面弯矩-曲率曲线

Fig. 9 Midspan moment-curvature curves

能够较好地预测 HS-ECC 受拉边缘应变的发展过程。当构件跨中截面顶部混凝土达到极限压应变

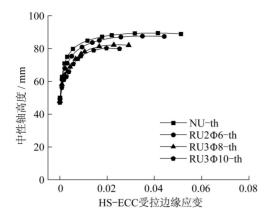


图 10 中性轴高度和梁底HS-ECC 拉应变关系
Fig. 10 Relationship between neutral axis height and tensile strain of HS-ECC at the bottom of beam

时,按照理论公式计算出梁底HS-ECC拉应变值,将这一应变值定义为构件对HS-ECC的拉应变需求。若此拉应变能力刚好为HS-ECC的极限拉应变,则意味着HS-ECC充分发挥了自身性能,材料利用率达到理想状态。如图12所示,随着配筋率的增大,梁底HS-ECC拉应变需求逐渐减小。无配筋HS-ECC梁的受拉边缘应变达到了5.1%(拉应变需求),配筋率2.94%梁的HS-ECC受拉边缘应变为2.5%(拉应变需求)。配筋率的提升增强了构件受拉区的承载能力,但受压区性能未得到有效改善,构件失效由受压区HS-ECC的极限应变控制。这一试验结果亦表明,HS-ECC因其优异的拉伸延性,具备了独立承担荷载,形成无配筋构件的能力。

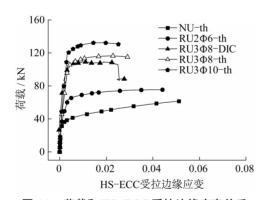


图 11 荷载和HS-ECC 受拉边缘应变关系
Fig. 11 Relationship between load and tensile
strain of HS-ECC

各试件荷载-纵筋应变的试验和理论曲线如图 13 所示。理论预测的纵筋应变发展过程与试验结果 基本一致。理论分析结果表明,随着配筋率的增大, 峰值荷载对应的纵筋拉应变逐渐降低。如图 13 所示,RU3Φ8 和 RU3Φ10 峰值荷载下应变片(exp)测

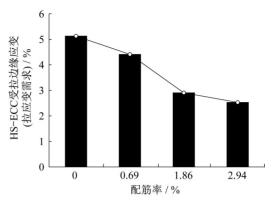


图 12 配筋率与HS-ECC 受拉边缘应变(拉应变需求)

Fig. 12 Relationship between reinforcement ratio and tensile strain of HS-ECC(tensile strain demand)

得的纵筋最大应变远大于理论预测值(th)。峰值荷载根据荷载-跨中位移曲线确定。理论计算采用的钢筋本构为理想弹塑性本构,而实际试件的钢筋具有屈服后硬化段。由于HS-ECC具有极高的拉应变能力和极优异的应变硬化行为,试件的最大纵筋应变超过屈服段后可能进入硬化段,从而实现更高的极限荷载,此时试件的跨中挠度更大,纵筋应变更大。

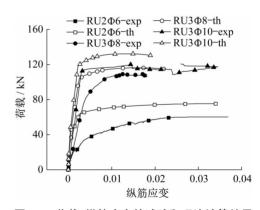


图 13 荷载-纵筋应变的试验和理论计算结果

Fig. 13 Experimental and theoretical results of load and strain of longitudinal steel bars

图 14 给出了荷载和 HS-ECC 受压边缘应变的 关系。对比 RU3 Φ8 的试验和理论计算曲线后可以 发现,峰值荷载前 DIC 观测的受压边缘应变与理论 预测值较接近,但峰值荷载后 DIC 观测的极限压应 变更大,此时试件荷载并没有明显下降。纵筋屈服 后受压边缘 HS-ECC 应变发展更快,这与平截面假 定有一定偏差。理论分析采用的 HS-ECC 轴心受压 本构与受弯构件跨中截面顶部 HS-ECC 的受压本构 有一定差异,实际受弯构件的跨中截面顶部 HS- ECC处于偏心受压状态,受压边缘HS-ECC受到下部材料的约束,并将压应力有效传递给下部HS-ECC,因而相比均匀受压的HS-ECC在更大极限压应变下受压边缘区HS-ECC仍然保持较高的压应力,从而维持了较高的荷载。

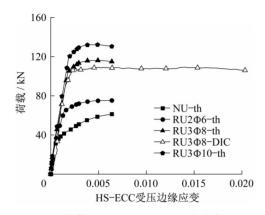
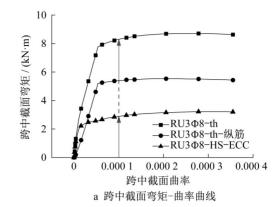
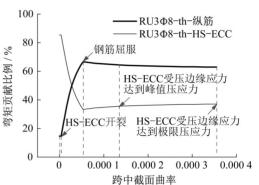
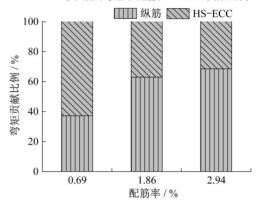


图 14 荷载和HS-ECC 受压边缘应变关系


Fig. 14 Relationship between load and compressive strain of HS-ECC


3.7 受拉区钢筋和HS-ECC对受弯承载力的贡献

配筋 HS-ECC 受拉区拉力由钢筋和 HS-ECC 共同提供,受压区压力由HS-ECC提供,共同抵抗外 力产生的弯矩。为了探讨配筋HS-ECC梁中钢筋和 HS-ECC 对受弯承载力的贡献,以RU3Φ8为例,将 钢筋贡献的弯矩表示为钢筋拉力与钢筋合力中心到 受压区HS-ECC合力中心的距离的乘积,HS-ECC 贡献的弯矩表示为总弯矩与钢筋贡献的弯矩之差, 如图 15a、b 所示。弹性阶段中性轴位置不变, HS-ECC和钢筋对弯矩的贡献比例分别为85%和15%。 HS-ECC开裂后,钢筋贡献比例显著增加,在屈服前 已超过HS-ECC, 屈服时HS-ECC 和钢筋对弯矩的 贡献比例分别为33%和67%。钢筋屈服后,凭借 HS-ECC 优异的拉应变硬化性能, HS-ECC 对弯矩 的贡献比例有所提升,试件破坏时HS-ECC的贡献 比例达到了37%。可见,HS-ECC可有效提升构件 的受弯性能。如图15c所示,随着配筋率的增大,各 试件破坏时跨中截面弯矩中钢筋贡献比例逐渐增 大,受拉区HS-ECC的贡献比例逐渐降低。需要指 出的是,受压区HS-ECC的超高变形性能保证了受 压区HS-ECC不像普通混凝土那样发生压溃,使钢 筋能够充分发挥受拉性能,提升了构件的弯曲承载 力和延性。


3.8 截面曲率延性系数、最小配筋率和界限配筋率

配筋HS-ECC梁的截面曲率延性系数与配筋率的关系如图16所示。随着配筋率的增大,截面曲率

b 跨中截面弯矩中钢筋和HS-ECC贡献比例

c 试件破坏时跨中截面弯矩中钢筋和HS-ECC贡献比例

图 15 受拉区钢筋和HS-ECC对跨中截面弯矩的贡献比例 Fig. 15 Contribution ratio of midspan moment for tensile longitudinal steel bars and HS-ECC

延性系数逐渐降低。一方面,增大配筋率提高了构件的抗弯刚度;另一方面,配筋HS-ECC梁的破坏仍以跨中顶部受压区HS-ECC达到受压极限压应变为标志,而受压区HS-ECC并未因配筋率增大而增强。因此,构件的截面转角变形能力降低,延性系数降低。

对于普通钢筋混凝土梁,当配筋率较小时,混凝土开裂后裂缝迅速扩展,开裂截面上原来由混凝土承担的拉力转嫁到钢筋,钢筋应力和应变迅速增大进而拉断,因此应对普通钢筋混凝土梁的最小配筋率做出规定。对于配筋 HS-ECC 梁,当不配筋或配

(29)

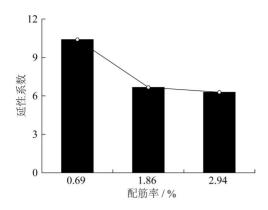


图 16 截面曲率延性系数与配筋率的关系

Fig. 16 Relationship between cross-section curvature ductility index and reinforcement ratio

筋率较小时,HS-ECC开裂后具有极强的拉应变硬化性能,能够继续承担拉力,不会导致钢筋应力陡增,因此一般不必对配筋HS-ECC梁的最小配筋率做出限制。

当受拉钢筋应力达到屈服强度的同时,若HS-ECC 受压边缘纤维恰好达到极限压应变,则认为梁达到极限承载力而破坏,此时发生界限破坏,对应配筋率为界限配筋率。因此,根据力学平衡方程和几何物理关系(见式(29))可计算出界限配筋率。以直径为8 mm 的纵筋材性数据为例,将屈服强度 500 MPa、弹性模量 202 GPa代人式(30),可得界限配筋率 ρ_{max} =10. 21%,因此本研究中 3 根配筋 HS-ECC 受弯试件的配筋率均小于界限配筋率。

$$\begin{cases} b\alpha_{1}\sigma_{\text{cp}}\beta_{1}x_{\text{cu}} = f_{y}A_{\text{s}} + \frac{\sigma_{\text{tc}}b}{2}(h - x_{\text{cu}} + a) + \\ \frac{ab}{2}\frac{\sigma_{\text{tu}} - \sigma_{\text{tc}}}{\varepsilon_{\text{tu}} - \varepsilon_{\text{tc}}}(\varepsilon_{\text{t}} - \varepsilon_{\text{tc}}) \\ \frac{\varepsilon_{y}}{\varepsilon_{\text{cu}}} = \frac{h - x_{\text{cu}} - m}{x_{\text{cu}}} \\ \frac{\varepsilon_{\text{tc}}}{\varepsilon_{\text{cu}}} = \frac{h - x_{\text{cu}} - a}{x_{\text{cu}}} \\ \frac{\varepsilon_{\text{t}}}{\varepsilon_{\text{cu}}} = \frac{h - x_{\text{cu}}}{x_{\text{cu}}} \end{cases}$$

$$\rho_{\text{max}} = \frac{1}{f_{\text{y}}(h-m)} \left(\frac{\alpha_{1}\sigma_{\text{cp}}\beta_{1}\varepsilon_{\text{cu}}(h-m)}{\varepsilon_{\text{y}} + \varepsilon_{\text{cu}}} - \frac{\sigma_{\text{tc}}((2\varepsilon_{\text{y}} - \varepsilon_{\text{tc}})h + (2\varepsilon_{\text{cu}} + \varepsilon_{\text{tc}})m)}{2(\varepsilon_{\text{y}} + \varepsilon_{\text{cu}})} - \frac{((\varepsilon_{\text{y}} - \varepsilon_{\text{tc}})h + m(\varepsilon_{\text{cu}} + \varepsilon_{\text{tc}}))^{2}}{2(\varepsilon_{\text{y}} + \varepsilon_{\text{cu}})(h-m)} \frac{\sigma_{\text{tu}} - \sigma_{\text{tc}}}{\varepsilon_{\text{tu}} - \varepsilon_{\text{tc}}} \right) (30)$$

式中: x ... 为界限破坏时中性轴到梁顶面距离。

4 受剪承载力计算

4.1 规范中的计算公式

如表 5 所示,针对本研究中的无腹筋 HS-ECC 梁的受剪承载力,共采用4 种规范进行计算,参数定义见对应规范。采用规范中的公式计算配筋 HS-ECC 梁的受剪承载力时,材料强度和应变性能指标均取平均值,材料性能分项系数均取 1.0。

表 5 HS-ECC梁受剪承载力计算公式

Tab. 5 Calculation formula for shear capacity of HS-ECC beams

规范	计算公式	重要参数取值
纤维混凝土结构技术规程 (CECS 38:2004) ^[24]	$V_{\mathrm{ul}} = 0.7 \beta_{\mathrm{h}} f_{\mathrm{t}} b h_{0} (1 + \beta_{\mathrm{v}} \lambda_{f})$ $\beta_{\mathrm{h}} = \left(\frac{800}{h_{0}}\right)^{1/4}$	将 $f_{i}(1+eta_{i}\lambda_{f})$ 取为HS-ECC的理论拉伸强度,即 f_{i} 即 f_{i} 和Pa
日本JSCE 2008规范 ^[25]	$V_{ m u2} \! = \! V_{ m cd} \! + V_{ m fd} \! = \! rac{eta_{ m d} eta_{ m p} eta_{ m n} f_{ m vcd} b_{ m w} d}{m{\gamma}_{ m b}} \! + \! rac{(f_{ m vd} / an eta_{ m u}) b_{ m w} z}{m{\gamma}_{ m b}}$	$\gamma_b = 1.0, \beta_n = 1.0, f_{vcd} = 7 \text{ MPa}, \beta_u = 45^{\circ}$
Fib model code for concrete structures 2010 ^[26]	$V_{\rm u3} = \frac{0.18}{\gamma_{\rm c}} k \left(100 \rho_{\rm l} \left(1 + 7.5 \frac{f_{\rm Ftuk}}{f_{\rm ctk}}\right) f_{\rm ck}\right)^{1/3} b_{\rm w} d$	根据以往试验数据, $f_{\text{Ftik}}/f_{\text{clk}}$ 取3.5
法国AFGC规范 ^[27]	$V_{ m u4} \! = \! V_{ m c} \! + V_{ m f} \! = \! rac{0.21}{\gamma_{ m cf} \gamma_{ m E}} k \! f_{ m ck}^{0.5} b d + \! rac{A_{ m b} \sigma_{ m Rd,f}}{ an heta}$	θ =45°; 考虑到HS-ECC的优异拉应变硬化能力, $\sigma_{\mathrm{Rd,I}}$ 取HS-ECC的拉伸强度 7 MPa

注: $V_{ul} \sim V_{ud}$ 为不同方法计算得到的受剪承载力。参数定义见对应规范。

4.2 理论计算与试验结果对比

表6对比了试验和理论计算的受剪承载力。对于 RU2 Φ 6NS, V_{exp} 取试件受弯极限荷载的一半。除 V_{u3} 外,各理论受剪承载力均显著大于试验承载力,表明试件 发生受弯破坏是合理的。对于 V_{u1} 与 V_{u4} ,由于不考虑

纵筋影响,不同配筋率试件的理论受剪承载力均相等。 纤维混凝土结构技术规程的计算结果 V_{ul} 略小于试验 受剪承载力,偏于保守。日本JSCE2008规范(V_{u2})考 虑了纵筋配筋率的影响与纤维的桥联作用,理论计算 值略大于试验值。法国AFGC规范(V_{ud})同时考虑了 剪压区混凝土和纤维的贡献,计算值显著大于试验受剪承载力,这主要是因为剪压区混凝土对受剪承载力的贡献过大。Fib model code for concrete structures 2010(V_{ω})同样考虑了纵筋配筋率的影响和纤维的贡

献,给出的理论计算值与试验值最为接近。因此,对于配筋HS-ECC梁受剪承载力计算,采用日本规范与Fib规范更合适。值得指出的是,关于HS-ECC的抗压强度和拉伸强度的取值均有待进一步讨论。

表 6 HS-ECC 梁的试验和理论受剪承载力

Tab. 6 Experimental and theoretical shear capacity of HS-ECC beams

试件编号	$V_{ m exp}/{ m kN}$	$V_{ m ul}/{ m kN}$	$V_{\scriptscriptstyle ext{u2}}/\mathrm{kN}$	$V_{\scriptscriptstyle m u3}/{ m kN}$	$V_{\rm u4}/{ m kN}$	$V_{ m ul}/V_{ m exp}$	$V_{ m u2}/V_{ m exp}$	$V_{ m u3}/V_{ m exp}$	$V_{ m u4}/V_{ m exp}$
RU2Ф6NS	37.3	47.3	56.0	35. 9	69.0	1.27	1.50	0.96	1.85
RU3Ф8NS	53. 1	47.3	58.0	50.0	69.0	0.89	1.09	0.94	1.30
RU3Φ10NS	59.8	47.3	59.2	58. 2	69.0	0.79	0.99	0.97	1.15

注:Vexp为试验承载力。

5 基于 Abaqus 软件的配筋 HS-ECC 梁受弯和受剪性能数值模拟

5.1 材料模型

采用 Abaqus 有限元软件开展了配筋 HS-ECC 梁的受弯和受剪性能数值模拟。采用的 HS-ECC 受压本构关系参考了文献[28]建议的超高性能混凝土理论公式,如方程(31)和图 17a 所示。

$$\sigma_{c} = \begin{cases} \sigma_{cp} \frac{k\gamma - \gamma^{2}}{1 + (k - 2)\gamma}, 0 \leqslant \varepsilon_{c} < \varepsilon_{cp} \\ \sigma_{cp} \frac{\gamma}{2(\gamma - 1)^{2} + \gamma}, \varepsilon_{cp} \leqslant \varepsilon_{c} \leqslant \varepsilon_{cu} \end{cases}$$

$$\gamma = \frac{\varepsilon_{c}}{\varepsilon_{cp}}, k = \frac{E_{c0}}{E_{cp}}$$
(31)

式中: E_{co} 为初始弹性模量; E_{cp} 为峰值点的割线弹性模量。受压本构关系如图17a所示。对于HS-ECC的受拉本构关系,根据拉伸试验数据,补充拉伸下降段曲线,采用三折线本构关系,如图17b所示。图17b中, σ_{cd} 和 ε_{cd} 分别为材料破坏时拉伸应力和应变。

采用 Abaqus 软件自带的混凝土塑性损伤 (concrete damaged plasticity, CDP)模型作为 HS-ECC 的材料模型。CDP模型选用的 HS-ECC 梁基本参数如表 7.8 所示。损伤因子的计算参考文献 [29]建议的虚交点法,受拉常数 n_c 和受压常数 n_c 分别取 5.0 和 20.0。

数值模型中钢筋的真实应力-应变曲线由试验结

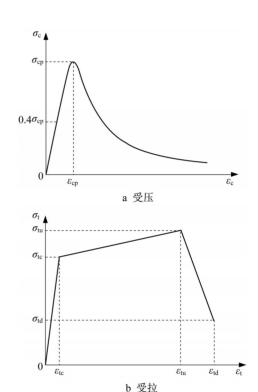


图 17 有限元模型中HS-ECC的受压和受拉应力-应变曲线 Fig. 17 Theoretical compressive and tensile stressstrain curves of HS-ECC in finite element model

果的名义应力-应变曲线换算获得,如图18所示。

5.2 模型建立和验证

有腹筋HS-ECC梁的有限元模型和网格划分如图19所示,无腹筋HS-ECC梁的有限元模型在有腹筋模型基础上去掉箍筋和架立筋。数值模型的网格划分如表9所示。为了使纯弯段更好地表现出应

表 7 混凝土塑性损伤模型采用的HS-ECC梁基本参数

Tab. 7 Basic parameters of concrete damage plasticity model for HS-ECC beams

密度/(kg•m ⁻³)	弹性模量/ (N•mm ⁻²)	泊松比	膨胀角/(°)	偏心率	双轴受压与单轴受压 极限强度比	不变量应力比	黏性系数
2 300	43 678	0.2	30	0.1	1.16	0.6667	0.0001

表 8 HS-ECC梁采用的材料力学性能参数

Tab. 8 Mechanical parameters of material for HS-ECC beam

$oldsymbol{arepsilon}_{ ext{cp}}$	$f_{ m c}/({ m N} { m \cdot mm}^{-2})$	k	$E_{c0}/(\mathrm{N} \bullet \mathrm{mm}^{-2})$	$E_{\rm cp}/({ m N} { m \cdot mm}^{-2})$	$E_{\rm c}/({ m N} { m \cdot mm}^{-2})$	$oldsymbol{arepsilon}_{ m tc}$	$\sigma_{\! ext{tp}}/(ext{N}ullet \ ext{mm}^{-2})$	$\epsilon_{ m tu}$	$\sigma_{\rm tu}/({ m N}{ m \cdot mm}^{-2})$	ϵ_{td}	$\sigma_{ m td}/({ m N}ullet \ { m mm}^{-2})$
0.0032	119.6	1.19	44 476	37 375	43 678	0.000173	7	0.08	9.88或14.81	0.10	3

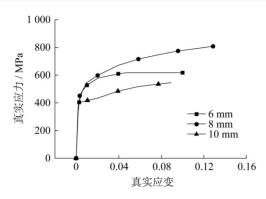


图 18 有限元模型中不同直径钢筋的真实应力-应变曲线
Fig. 18 True stress-strain curves of steel bars with
different diameters in finite element model

力-应变分布变化,将梁高方向尽量划分较多的层, 本研究中取16层。

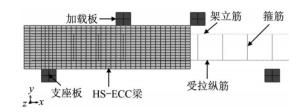
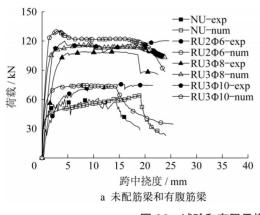



图 19 基于Abaqus 软件的配筋 HS-ECC 梁的有限元模型 Fig. 19 Finite element model of HS-ECC beams based on Abaqus

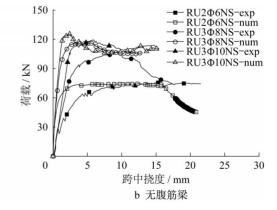


图 20 试验和有限元模拟的荷载-跨中挠度曲线

Fig. 20 Numerical and experimental load-midspan deflection curves

5.3.2 极限承载力

由表 10 可知,对于未配筋 HS-ECC 梁,有限元模拟所得最大荷载略大于试验值和理论值;对于有

表 9 有限元模型的网格划分 Tab. 9 Meshing of finite element model

部件	网格划分类型	单元类型	单元尺寸/mm
HS-ECC 梁	Structured	CPS4R	10
加载板	Structured	CPS4R	15
支座板	Structured	CPS4R	15
箍筋		T2D2	10
纵筋		T2D2	10
架立筋		T2D2	10

加载板与HS-ECC 梁之间法向采用硬接触 (hard contact),切向采用摩擦接触,摩擦系数取 0.25。支座与HS-ECC 梁之间采用 Tie 约束。钢筋与HS-ECC 梁之间采用 Embeded 连接,不考虑两者的黏结-滑移关系。采用位移控制施加荷载,设置参考点并耦合至加载板顶面。

5.3 模拟结果

5.3.1 荷载-跨中挠度曲线

图 20 给出了各试件的试验(exp)与有限元模拟 (num)的荷载-跨中挠度曲线。如图 20a 所示,对于未配筋梁,模拟的荷载-跨中挠度曲线与试验曲线吻合较好,仅承载力略低,刚度和最大位移接近。如图 20a、b所示,对于有腹筋和无腹筋 HS-ECC 梁,模拟荷载-跨中挠度曲线与试验曲线吻合良好,但由于未考虑钢筋与 HS-ECC 的黏结-滑移关系,模拟曲线的初始刚度普遍较试验曲线略大。

腹筋梁和无腹筋梁,模拟最大荷载均略大于试验值和理论值,平均误差小于10%,在可接受范围内。基于 Abaqus 软件的有限元模型能够有效模拟配筋

HS-ECC 梁的受弯和受剪性能,为今后进一步参数分析奠定了基础。

表 10 试验、理论和数值模拟的最大荷载对比

Tab. 10 Comparison of experimental, theoretical and numerical maximum load

试件编号	$\begin{array}{c} P_{\rm max,exp}/\\ \rm kN \end{array}$	$P_{ m max,th}/ m kN$	$\frac{P_{\rm max,num}}{\rm kN}$	$\frac{P_{\rm max,num}}{P_{\rm max,exp}}$	$rac{P_{ m max,num}}{P_{ m max,th}}$
NU1和NU2	61.4	61.4	64.2	1.05	1.05
RU2Ф6	74.3	70.8	74.5	1.00	1.05
RU3Ф8	109.2	113.9	116.1	1.06	1.02
RU3Φ10	120.3	130.4	130.3	1.08	1.00
RU2Ф6NS	74.6	70.8	74.3	1.00	1.05
RU3Ф8NS	106.2	100.0	116.2	1.09	1.16
RU3Φ10NS	119.5	116.4	125.4	1.05	1.08

6 结论与展望

- (1)配筋HS-ECC梁充分发挥了HS-ECC优异的拉伸与压缩变形能力,从而表现出优异的弯、剪延性以及更高的承载力与刚度。HS-ECC具有高拉伸强度、高压缩变形能力以及良好的延性和裂缝控制能力,使其具备了独立承担荷载以及形成无配筋构件的能力,从而为极端环境下构件耐久性提升提供了潜在的解决方案。
- (2)考虑了HS-ECC尺寸效应与箍筋干扰引起的拉伸性能折减,推导的受弯承载力理论结果与试验结果吻合良好。随后,得到了截面弯矩-曲率关系、中性轴发展过程、不同配筋率下受弯构件对HS-ECC的拉应变需求,分析了钢筋和HS-ECC对受弯承载力的贡献,并计算了截面曲率延性系数和界限配筋率。最后,验证了现有规范对无箍筋HS-ECC梁剪切承载力的适用性。
- (3)基于Abaqus软件的有限元模型准确模拟了 HS-ECC弯剪试件的荷载-跨中挠度曲线,试件的模 拟最大荷载与试验值平均误差小于10%。

作者贡献声明:

蔡自伟:论文构思、写作和修改,理论推导。

邓博予:试验实施,数据整理。

张 智:数值模拟。

陆洲导:基金获取。

李凌志:基金获取,论文修改。

俞可权:试验方案提出。

参考文献:

[1] LI V C, LEUNG C. Steady-state and multiple cracking of short random fiber composites [J]. Journal of Engineering

- Mechanics, 1992, 118(11): 2246.
- [2] PAN Jinlong, MO Chuang, XU Li, et al. Seismic behaviors of steel reinforced ECC/RC composite columns under low-cyclic loading [J]. Journal of Southeast University (English Edition), 2017, 33(1): 70.
- [3] YANG Xu, GAO Wanyang, DAI Jianguo, et al. Flexural strengthening of RC beams with CFRP grid-reinforced ECC matrix[J]. Composite Structures, 2018, 189; 9.
- [4] 徐世烺,李锐,李庆华,等. 超高韧性水泥基复合材料功能梯度 板接触爆炸数值模拟[J]. 工程力学, 2020, 37(8): 123. XU Shilang, LI Rui, LI Qinghua, *et al.* Numerical simulation of functionally graded slabs of ultra-high toughness cementitious composites under contact explosion [J]. Engineering Mechanics, 2020, 37(8): 123.
- [5] CAI Ziwei, LIU Feichi, YU Jiangtao, et al. Development of ultra-high ductility engineered cementitious composites as a novel and resilient fireproof coating [J]. Construction and Building Materials, 2021, 288:123090.
- [6] 徐世烺,李贺东. 超高韧性水泥基复合材料研究进展及其工程应用[J]. 土木工程学报, 2008(6): 45.

 XU Shilang, LI Hedong. A review on the development of research and application of ultra high toughness cementitious composites[J]. China Civil Engineering Journal, 2008(6): 45.
- [7] 阚黎黎,章志,张利,等. 低成本PVA 纤维对超高韧性水泥基复合材料力学性能的影响[J]. 工程力学, 2019, 36(11): 121. KAN Lili, ZHANG Zhi, ZHANG Li, et al. Effect of low-cost PVA fibers on the mechanical properties of engineered cementitious composites [J]. Engineering Mechanics, 2019, 36 (11): 121.
- [8] KAMAL A, KUNIEDA M, UEDA N, et al. Evaluation of crack opening performance of a repair material with strain hardening behavior [J]. Cement and Concrete Composites, 2008, 30(10): 863.
- [9] RANADE R, LI V C, STULTS M D, et al. Composite properties of high-strength, high-ductility concrete [J]. ACI Materials Journal, 2013, 110(4): 413.
- [10] DING Yao, YU Jiangtao, YU Kequan, et al. Basic mechanical properties of ultra-high ductility cementitious composites: from 40 MPa to 120 MPa [J]. Composite Structures, 2018, 185; 634.
- [11] LI Lingzhi, CAI Ziwei, YU Kequan, *et al.* Performance-based design of all-grade strain hardening cementitious composites with compressive strengths from 40 MPa to 120 MPa [J]. Cement and Concrete Composites, 2019, 97: 202.
- [12] DING Yao, YU Kequan, YU Jiangtao, et al. Structural behaviors of ultra-high performance engineered cementitious composites (UHP-ECC) beams subjected to bendingexperimental study [J]. Construction and Building Materials, 2018, 177: 102.
- [13] LI Lingzhi, BAI Yang, YU Kequan, et al. Reinforced highstrength engineered cementitious composite (ECC) columns under eccentric compression: experiment and theoretical model

- [J]. Engineering Structures, 2019, 198: 109541.
- [14] 李庆华,徐世烺. 钢筋增强超高韧性水泥基复合材料受弯构件 理论分析[J]. 工程力学, 2010, 27(7): 92. LI Qinghua, XU Shilang. Theoretical analysis on flexural behavior of reinforced ultra-high toughness cementitious composite members [J]. Engineering Mechanics, 2010, 27 (7): 92.
- [15] LIAO Qiao, LI Lingzhi, LI Bixiong, *et al.* Prediction on the flexural deflection of ultra-high strength rebar reinforced ECC beams at service loads[J]. Structures, 2021, 33: 246.
- [16] CAI Jingming, PAN Jinlong, YUAN Fang. Experimental and numerical study on flexural behaviors of steel reinforced engineered cementitious composite beams [J]. Journal of Southeast University (English Edition), 2014, 30(3): 330.
- [17] GE Wenjie, ASHOUR AF, JI Xiang, et al. Flexural behavior of ECC-concrete composite beams reinforced with steel bars [J]. Construction and Building Materials, 2018, 159: 175.
- [18] 侯利军. 超高韧性水泥基复合材料弯曲性能及剪切性能试验研究[D]. 大连:大连理工大学, 2012. HOU Lijun. Experimental investigation on flexural and shear behaviors of ultrahigh toughness cementitious composite [D]. Dalian: Dalian University of Technology, 2012.
- [19] 张秀芳, 姬仁楠. 钢筋超高韧性水泥基复合材料梁的抗剪性能 [J]. 水利与建筑工程学报, 2015, 13(4): 168.

 ZHANG Xiufang, JI Rennan. Shear performances of steel reinforced ultrahigh strength cementitious composite beams [J].

 Journal of Water Resources and Architectural Engineering, 2015, 13(4): 168.
- [20] 汪梦甫,徐亚飞,陈红波. PE-ECC 短梁抗剪性能研究[J]. 湖南大学学报(自然科学版), 2015, 42(11): 10.
 WANG Mengfu, XU Yafei, CHEN Hongbo. Research on shear behavior of PE-ECC short beam [J]. Journal of Hunan University (Natural Sciences), 2015, 42(11): 10.
- [21] 乔治,潘钻峰,梁坚凝,等.基于MCFT的钢筋增强ECC梁受剪承载力计算方法[J].东南大学学报(自然科学版),2018,

- 48(6): 1021.
- QIAO Zhi, PAN Zuanfeng, LEUNG C K Y, et al. Calculation method for shear strength of reinforced ECC beams using modified compression field theory [J]. Journal of Southeast University (Natural Science Edition), 2018, 48(6): 1021.
- [22] MENG D, HUANG T, ZHANG Y X, *et al.* Mechanical behaviour of a polyvinyl alcohol fibre reinforced engineered cementitious composite (PVA-ECC) using local ingredients [J]. Construction and Building Materials, 2017, 141: 259.
- [23] YU K Q, DING Y, ZHANG Y X. Size effects on tensile properties and compressive strength of engineered cementitious composites[J]. Cement and Concrete Composites, 2020, 113: 103691.
- [24] 纤维混凝土结构技术规程(CECS 38:2004)[S]. 北京: 中国 计划出版社,2004. Technical specification for fiber reinforced concrete structures (CECS 38:2004)[S]. Beijing: China Planning Press, 2004.
- [25] Recommendations for design and construction of high performance fiber reinforced cement composites with multiple fine cracks (HPFRCC) [S]. Tokyo: Japan Society of Civil Engineers, 2008.
- [26] International Federation for Structural Concrete. Fib model code for concrete structures 2010[S]. Lausanne: Ernst & Sohn GmbH & Co. KG, 2010.
- [27] AFGC, SETRA. Ultra high performance fibre-reinforced concretes recommandations [S]. Paris: AFGC and SETRA Working Group, 2013.
- [28] WANG Zhe, NIE Xin, FAN Jiansheng, *et al.* Experimental and numerical investigation of the interfacial properties of non-steam-cured UHPC-steel composite beams [J]. Construction and Building Materials, 2019, 195: 323.
- [29] LI Wei, HAN Linhai. Seismic performance of CFST column to steel beam joints with RC slab; analysis [J]. Journal of Constructional Steel Research, 2011, 67(1): 127.