时间步长对格子玻尔兹曼法模拟室内气流精度的影响

韩梦涛

(华中科技大学建筑与城市规划学院,湖北武汉 430074)

摘要:基于格子玻尔兹曼法的大涡模拟(LBM-LES)是湍 流模拟的新方法,但不恰当的时间步长 δ ,可能会影响其计算 精度。首先理论总结了 δ ,可能对LBM-LES湍流模拟造成 的影响,阐明过大的 δ ,会导致速度场产生压缩性误差,而过 小的 δ ,会导致超松弛碰撞产生速度场的数值振荡。其次,通 过对等温室内气流案例进行LBM-LES模拟,定量讨论了 δ , 引起的压缩性误差和数值振荡问题。结果表明, δ ,较大时流 场密度变化剧烈,且格子玻尔兹曼单位的马赫数(*M*)超过0.3 的区域中速度场产生了明显的压缩性误差。同时,过小的 δ , 导致平均及脉动风速均产生了数值振荡,这在网格分辨率较 高时尤为明显。建议模拟时在确保 δ ,足够小以满足最大风 速区域的*M*<0.3 的基础上,尽量增大 δ ,以防止产生数值 振荡。

关键词:风环境;格子玻尔兹曼法;时间步长;压缩性误差;
 超松弛碰撞;大涡模拟
 中图分类号:TU11;TB126
 文献标志码:A

Effect of Time Steps on Accuracy of Indoor Airflow Simulation Using Lattice Boltzmann Method

HAN Mengtao

(School of Architecture and Urban Planning, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China)

Abstract: Lattice Boltzmann method-based large-eddy simulation (LBM-LES) is a new method to solve turbulence problems in recent decades. However, improper time step settings may affect the simulation accuracy of LBM-LES. This paper first analyzed and summarized the impact of time step δ_t on the results of LBM-LES, theoretically. An oversized δ_t will cause compressibility error in the velocity field, while a too small δ_t can lead to the over-relaxation colliding mode, causing the numerical oscillation of velocity field. Subsequently, LBM-LES simulations of an isothermal indoor airflow case were conducted to discuss these errors quantitatively. The results show that a large δ_t leads to a sharp density change, and the velocity field in the regions where the Mach number (M) in the lattice Boltzmann unit exceeds 0.3 showing that there are obvious compressibility errors. Meanwhile, a too-small δ_t causes apparent numerical oscillations of both time-averaged and fluctuating velocities. This phenomenon is more significant when the grid resolution is higher. Therefore, it is suggested that δ_t should be small enough to ensure M<0.3 in the maximum velocity regions, based on which, a larger δ_t should be utilized to prevent numerical oscillations.

Key words: wind engineering; lattice Boltzmann method; time steps; compressibility errors; over relaxation; large-eddy simulation

近年,基于格子玻尔兹曼法的大涡模拟(lattice Boltzmann method-based large-eddy simulation, LBM-LES)开始应用于建筑^[1-3]和城市风环境^[4]模 拟。与当前风环境主流的有限体积法(finite volume method, FVM)在宏观尺度上求解物理量不同, LBM用虚拟的、包含有限种速度模式的微观分布函 数表示流体粒子的集合,并通过分布函数的碰撞和 迁移来模拟流体运动^[5]。与基于FVM的大涡模拟 (FVM-LES,即风环境模拟的主流LES方法)^[6-7]相 比,LBM-LES算法简单,边界条件易于实现,且在 LES计算中无需求解压力泊松方程^[8],计算速度更 快,在复杂湍流风环境模拟中具有较大潜力^[9-10]。

LBM的控制方程是格子玻尔兹曼方程,其中的 关键项是碰撞算子。碰撞算子的形式决定了待求解 流体的性质。BGK(Bhatnagar-Gross-Krook)近似模

第一作者:韩梦涛(1987—),男,副研究员,硕士生导师,工学博士,主要研究方向为建筑与城市风热环境、绿色建筑。 E-mail; hanmt@hust. edu. cn

收稿日期: 2021-10-15

基金项目:中央高校基本科研业务费专项资金(2021XXJS053)

型^[11]是最常用的碰撞算子,能以简单的形式获得足 够精度的模拟结果。既往研究表明,BGK算子在模 拟环境风问题,尤其是室内气流中取得了较好的成 果。Elhadidi等^[1]利用含BGK算子的LBM模拟了较 粗网格条件下室内空间的气流分布并与FVM进行 了比较。Han等^[2]则系统总结了使用LBM-LES模 拟室内空气流动时不同计算条件对模拟精度的影 响,并与FVM-LES进行了详细比较。上述研究表 明含BGK算子的LBM-LES可有效模拟室内空气流 动,并可取得与FVM-LES类似的模拟结果。

同时理论分析表明,利用含 BGK 算子的 LBM-LES 可推导出低马赫数(Mach number, M)流体的 连续性方程和纳维-斯托克斯(Navier-Stokes, N-S) 方程,但推导出的 N-S 方程与风环境模拟中常用的 方程形式有所差异^[12-14],从而产生模拟误差。该误差 与模拟时间步长δ_i的设定紧密相关,不恰当的δ_i设 置可能导致计算结果出现压缩性误差或数值振荡。 目前,在应用LBM-LES 模拟风环境问题时,δ_i的设 置引起的误差问题尚未引起足够重视和充分讨论。 为了在应用LBM-LES 模拟风环境时对如何设置δ_i 提供依据,本文梳理了既往研究,从理论方面系统总 结了δ_i的设置可能引起的压缩性误差或数值振荡, 并以室内空气流动案例为例,定量讨论了δ_i造成压 缩性误差或数值振荡的程度。

1 含BGK的LBM中与时间步长相关 的误差理论分析与总结

1.1 含BGK的格子玻尔兹曼方程及LBM-LES方法的理论回顾

本节首先对含BGK碰撞算子的格子玻尔兹曼 方程及LBM-LES方法的理论进行简要回顾,以便 后文对误差进行理论分析。该方程如式(1)所示。

$$f_{a}(\mathbf{r}+\delta_{t}\mathbf{e}_{a},t+\delta_{t})-f_{a}(\mathbf{r},t)=$$
$$-\frac{1}{\tau}[f_{a}(\mathbf{r},t)-f_{a}^{\text{eq}}(\mathbf{r},t)] \qquad (1)$$

式中: f_a 为a方向分布函数; e_a 为a方向上 f_a 的离散速 度;r和t分别为 f_a 所在位置向量和时间; f_a^{eq} 为 f_a 的平 衡函数; δ_t 为离散时间步长; τ 为 f_a 的松弛时间。

格子玻尔兹曼法方程在微观层面描述了流体粒 子的分布函数随时间发展的演化过程。当分布函数 确定后,流体速度u、密度ρ及压力p等宏观物理量可 通过式(2)求得。其中,e。为格子声速,在三维问题 中的值为1/√3,其他参数含义同前。

$$\rho = \sum f_a(\mathbf{r}, t) \tag{2a}$$

$$\boldsymbol{u} = \frac{1}{\sum} \boldsymbol{e}_{a} f_{a}(\boldsymbol{r}, t) \tag{2b}$$

$$p = \rho e_s^2$$
(2c)

在面对高雷诺数 Re 的湍流问题时,可基于 LBM开展LES计算(LBM-LES)。根据LES 理论, 流体的总粘性 ν_{tot} 由分子粘性 ν 及亚格子粘性 ν_{sgs} 共 同构成(即 $\nu_{tot} = \nu + \nu_{sgs}$)^[15]。同时,基于LBM理论, 流体的总粘性 ν_{tot} 与总松弛时间 τ_{tot} 存在如式(3)所示 的关系:

$$\nu_{\rm tot} = e_{\rm s}^{2}(\tau_{\rm tot} - 0.5)$$
 (3)

基于式(3)可用总松弛时间 τ_{tot} 替换式(1)中的 松弛时间 τ 以开展LBM-LES计算。与传统FVM-LES相同,只需采取合适的LES亚网格模型计算亚 网格粘性 ν_{sgs} ,即可开展LBM-LES计算。

1.2 实际物理量到格子玻尔兹曼单位的转换

在式(1)中,以真实物理量(通常包含量纲)所度 量的流体原型问题首先被映射到格子玻尔兹曼单位 的物理量(通常是量纲一的)进行模拟,模拟完成后 再将其映射回真实物理量以输出结果。故模拟第一 步是确定适当的转换参数。在无外力等温流体问题 中,LBM主要关注流体粘性 ν 、速度u、压力p及位置 r参数,在进行上述物理量的转换时只需网格分辨率 δ_x 和时间步长 δ_i 两个转换参数。各物理量转换关系 如式(4)所示,其中上标 ph 和 lb 分别表示真实物理 量及其对应的格子波尔兹曼单位物理量。

 $u^{\mathrm{lb}} = u^{\mathrm{p}}$

$$\boldsymbol{r}^{\mathrm{lb}} = \boldsymbol{r}^{\mathrm{ph}} \frac{1}{\delta_{-}} \tag{4a}$$

$$\frac{\delta_t}{2}$$
 (4b)

$$p^{\rm lb} = p^{\rm ph} \left(\frac{\delta_t}{\delta_{\rm c}}\right)^2 \tag{4c}$$

$$\nu^{\rm ph} \frac{\delta_t}{\delta^{2}}$$
 (4d)

其中,网格分辨率δ_x通常根据湍流复杂度、模拟所需 精度及计算量共同确定,与传统 FVM-LES 基本相 同。需要注意的是,LBM 中采用的是均匀正立方体 网格,无法如 FVM-LES 一样在局部复杂湍流区域 加密网格,故应注意使用测试网格独立性等方式来 确定网格尺寸。这在既往研究中已得到多次验 证^[2,4]。而时间步长δ_i的确定则与FVM-LES有较大 差异。过大或过小的δ_i都可能导致明显的精度误 差,这将是本文接下来的讨论重点。

1.3 压缩性误差

利用BGK算子,可从格子玻尔兹曼方程中推导 出形如式(5)的N-S方程^[14-15]:

$$\frac{\partial(\rho \boldsymbol{u})}{\partial t} + \nabla \cdot (\rho \boldsymbol{u} \boldsymbol{u}) = -\nabla p + \nabla \cdot e_{s}^{2} \left(\tau - \frac{1}{2}\right) \rho \left[\nabla \boldsymbol{u} + (\nabla \boldsymbol{u})^{\mathrm{T}}\right] + O(\boldsymbol{\epsilon}^{2}) + O(M^{3})$$
(5)

式(5)中:O(ϵ^2)和O(M^3)分别为与 ϵ^2 和 M^3 相关的 高阶省略项; ϵ 为努森数(Knudsen number),与马赫 数M成正相关,即O(ϵ^2)~O(M^2)^[12]。式(5)相比 标准的N-S方程多了与M相关的附加项。其中M是以格子波尔兹曼单位定义的,如式(6)所示:

$$M = \frac{|\boldsymbol{u}^{\text{lb}}|}{e_{\text{s}}} = \frac{|\boldsymbol{u}^{\text{ph}}|\delta_{t}}{e_{\text{s}}\delta_{x}}$$
(6)

式中:|**u**^{ph}|为局部物理速度**u**^{ph}的大小。

式(5)同时表明,推导出的N-S方程以可压缩形 式存在(即无法消去各项中的密度ρ),意味着LBM-LES在处理不可压缩流体问题时本质上是一种伪可 压缩方法,并会产生所谓的"压缩性误差"^[12]。虽然 严格来说不可压的流体并不存在,但在处理诸如建 筑与城市风环境等低流速问题时,FVM-LES通常 采用不可压缩的N-S方程。由此可见LBM-LES与 FVM-LES在计算时针对是否可压缩的处理方法上 有较大区别。既往研究^[12,15]表明,LBM的压缩性误 差包括与密度梯度相关的误差,以及上述与M相关 附加项导致的误差。

式(6)表明,即使在局部风速与网格分辨率 δ_x 一定时,较大的时间步长 δ_i 会增大M,从而增大使式 (5)中与M及 ϵ 相关项的值(即压缩性误差)。故在 模拟不可压缩湍流问题时,与传统FVM-LES相比, 不恰当的 δ_i 可能导致M增大,从而使得模拟结果产 生压缩性误差。Skordos^[16]曾尝试用LBM模拟层流 状态下的二维泰勒涡旋流和剪切流,发现涡旋流的 模拟值和解析值之间的误差随着M的减小而减小, 并最终实现稳定收敛。而在剪切流中,随着M的减 小,模拟误差呈先减小而后增大的趋势。Reider等 人^[12]从理论上推导了压缩性误差,并证实在 Re= 100 且周期为 2π 的衰减泰勒涡流模拟结果准确性随 着M的降低而提高。

应当注意,BGK算子中的压缩性误差与FVM-LES中库朗数C的不正确设置引起的误差并非同一 概念,尽管C也是由 δ_x 和 δ_i 间的取值关系造成。在 FVM-LES中,在处理低M不可压缩流体时,通常建 议选择适当的时间步长 δ_i 以将C控制在小于1(即 $C = |\mathbf{u}^{\text{ph}}|\delta_x^{\text{ph}} < 1$),否则将造成结果误差甚至模 拟发散。而在LBM-LES中,保证模拟稳定性的一 个必要条件是M < 1,即 $|u^{\text{b}}| < 1/\sqrt{3} \approx 0.577$,否则 模拟将直接发散。故若要保证LBM-LES模拟正常 稳定进行,则必有 $C = |u^{\text{b}}| \delta_t^{\text{b}} / \delta_x^{\text{b}} < 1$ 始终成立(因 为LBM规定了 $\delta_t^{\text{b}} = 1$ 和 $\delta_x^{\text{b}} = 1$)。

1.4 超松弛与数值振荡

从式(1)中可明显看出BGK算子的本质是表现 分布函数 $f_a(\mathbf{r}, t)$ 以一定的速率向平衡分布状态 $f_a^{eq}(\mathbf{r}, t)$ 的演化过程,即松弛过程。该式可改写为如 式(7)的形式:

$$f_{a}(\boldsymbol{r}+\delta_{t}\boldsymbol{e}_{a},t+\delta_{t}) = \left(1-\frac{1}{\tau}\right)f_{a}(\boldsymbol{r},t)+\frac{1}{\tau}f_{a}^{\text{eq}}(\boldsymbol{r},t)$$
(7)

根据 $\left(1-\frac{1}{\tau}\right)$ 的取值为正、负或零, f_a 或缓慢接近 f_a^{eq} ,或立刻达到 f_a^{eq} ,或直接超过 f_a^{eq} 。BGK算子可导致分布函数有如下三种演化形态^[17]:

(1) 当 $1 - \frac{1}{\tau} > 0$, 即 $\tau > 1$ 时, f_a 以固定速率向 f_a^{eq} 逐渐演化,称为亚松弛(under relaxation);

(2) 当 $1 - \frac{1}{\tau} = 0$, 即 $\tau = 1$ 时, f_a 只需一个时间 步长即达到 f_a^{eq} ,称为全松弛(full relaxation);

(3) 当 $1 - \frac{1}{\tau} < 0$, 即 $\frac{1}{2} \le \tau < 1$ 时, f_a 直接超过 f_a^{eq} ,称为超松弛(over relaxation)。

应当注意, τ 不可小于 $\frac{1}{2}$,因为根据式(3),流体的粘性不可为负。Krüger等人^[17]研究了初始条件为 $f_0/f_0^{eq} = 1.1$ 、且 f_0^{eq} 为恒定值条件下的BGK算子,得到了如图1所示的 f_0 与 f_0^{eq} 的关系,对应了上述的三种形态模式。

图 1 BGK 算子中的亚松弛、全松弛及超松弛算例(重绘自 Krüger 等^[17])

图1表明理想的碰撞过程是亚松弛或全松弛, 即 f_a 平滑地或直接向 f_a^{eq} 演化。在实际模拟中,全松 弛难以达到,因为不可能经过一步就完成模拟。而 在超松弛中 f_a 将围绕 f_a^{eq} 振动并以指数幅度衰减,最 后达到 f_a^{eq} 。但 τ 过小可能导致振动过于剧烈, f_a 无法 达到 f_a^{eq} ,最终得到错误结果。

综合式(3)、式(4)可得到如式(8)的关系:

$$\tau_{\rm tot} = \frac{\nu_{\rm tot}^{\rm lb}}{e_{\rm s}^{2}} + 0.5 = \frac{\nu_{\rm tot}^{\rm ph} \delta_{t}}{e_{\rm s}^{2} \delta_{x}^{2}} + 0.5$$
(8)

式(8)表明,由于流体粘性心,通常为定值,故当确定 网格分辨率 δ_r 后, τ_{tot} 的大小与 δ_r 正相关。 δ_r 的设定 影响 无 的大小,从而决定了碰撞过程的松弛模式。 理想状态下 τ 应不小于1,据式(8)可知需要 $\nu_{tat}^{b} \ge \frac{1}{6}$ 或 $\nu_{tot}^{ph} \geq \frac{\delta_x^2}{6\delta_t}$ 。然而这在风环境模拟中较难满足。由 于空气动粘性系数极小(数量级为10⁻⁵ m²·s⁻¹),即使 在LES计算中加上亚网格粘性 ν_{sgs} 也很难大于 $\frac{\delta_x^2}{6\delta_r}$ 。 例如.在风环境模拟中,由于库朗数和计算量的双重 限制,很难在设置 $\delta_r = 1$ m的同时使得 $\delta_l = 10^{-5}$ s: 也无法使用 $\delta_x = 10^{-3}$ m来匹配 $\delta_t = 10^{-1}$ s。尽管在 风速较小的局部区域可能满足 $\nu_{tot}^{ph} \geq \frac{\delta_x^2}{6\delta_t}$,但建筑或 城市尺度的风环境中,大部分区域(特别是所关注的 区域)主要以高雷诺数湍流为主,故风环境模拟中 BGK算子主要表现为超松弛模式。通常这种超松 弛模式下的振动类似湍流脉动,然而不恰当的网格 分辨率δ,和时间步长δ,之间的关系会导致类似图1 $+ \tau = 0.51$ 所示的剧烈振动,最终导致模拟结果产 生数值振荡。尤其是在相同的网格分辨率 δ_{x} 下,过 小的δ,会导致ν^b过小,从而导致严重的数值振荡。 这与传统的FVM-LES具有极大的不同。

综合上述分析可知,在LBM-LES进行风环境 模拟时,当δ_x确定后,过大的δ_i可能导致与*M*相关 的项产生较大的压缩性误差,而δ_i过小则使松弛时 间τ减小,可能造成松弛碰撞算子产生数值振荡。这 是LBM-LES相比传统FVM-LES在模拟设置上的 一个重要区别。FVM-LES中,只要离散时间步长 满足*C*<1则不会对模拟结果产生显著的影响。既 往研究已经讨论了层流状态下二维流动中LBM-LES的压缩性误差^[12],而以风环境模拟为代表的湍 流状态下不同时间步长对模拟结果的影响尚未充分 讨论。下节将以室内气流为例定量讨论这一问题。 该案例边界条件相对简单、纯粹、易于控制,便于进 行定量研究。

2 等温室内气流模拟案例

本文采用国际能源机构推荐的标准等温室内气 流案例(IEA-Annex 20^[18]),对含BGK算子的LBM-LES进行压缩性误差研究。该案例形状及取样位置 如图2所示,房间特征参数为L/H=3,h/H= 0.056,r/H=0.16。其中L,W和H分别代表房间 长度、进深和高度,且H=3.0 m。h和r分别代表气 流入口及出口高度。由房间高度及气流入口速度定 义的Re~89000。模拟参数详表1。本文中,含标准 Smagorinsky 亚网格模型^[19]及BGK碰撞算子的 LBM-LES应用于本模拟。Han等^[2]的既往研究已 经表明该亚网格模型和BGK算子能较好地适应室 内气流模拟,取得满意的模拟精度。

图 2 等温室内气流案例的几何形状及取样点分布(修改自 IEA-Annex 20^[18])

之前 Han 等^[2] 已经讨论了 LBM-LES 的网格分 辨率对模拟精度的影响,本文基于其研究结果仅选 取 $\delta_x = 1/75 H \mathcal{D} 1/150 H$ 两种网格,讨论不同时间 步长 δ_t 对模拟精度的影响。具体工况设置如表2所 示。工况名称规定为"XaTb",表示网格分辨率及时 间步长分别为 $\delta_x = H/a \mathcal{D} \delta_t = 1/b s_o$ 表 1 模拟参数及相关边界条件

 Simulation parameters and boundary conditions

 参数项目
 参数值

 亚网格模型
 标准 Smagorinsky 模型 ($C_s = 0.12^{[20]}$)

 房间尺寸
 $9.0 \text{ m} \times 3.0 \text{ m} \times 3.0 \text{ m} (L \times W \times H)$

 LES 模拟流场物理时间
 预备模拟区间: 18 min,采样区间: 6 min(换气率 0.172 min⁻¹)

 人口边界条件
 $U_{in} = 0.455 \text{ m·s}^{-1}, 无流入湍流$

 出流边界条件
 压力梯度 0

	-	表 2	工况	设置	
_	-	~	~		

Tab. 2Case settings

工况名称	δ_x / m	δ_t / s	$\nu^{ m lb}$	工况名称	δ_x / m	δ_t / s	$\nu^{ m lb}$
X75T50		1/50	$1.82 imes 10^{-4}$	X150T200		1/200	$9.10 imes 10^{-5}$
X75T100		1/100	$9.10 imes 10^{-5}$	X150T400		1/400	$4.55 imes 10^{-5}$
X75T200	0.04 m	1/200	$4.55 imes 10^{-5}$	X150T800	0.02 m	1/800	$2.28 imes 10^{-5}$
X75T400	(1/75 H)	1/400	$2.28 imes10^{-5}$	X150T1600	(1/150 H)	$1/1\ 600$	$1.14 imes10^{-5}$
X75T800		1/800	$1.14 imes10^{-5}$	X150T3200		$1/3\ 200$	$5.70 imes 10^{-6}$
X75T1600		1/1.600	5.70×10^{-6}				

3 模拟结果与讨论

3.1 平均与湍流脉动风速结果及精度分析

图 3 显示了 \bar{u} (时间平均风速的 x 方向分量)和 $\sqrt{u^{12}}$ (基于时间平均的脉动风速标准差的 x 方向分量)的模拟结果。所有结果均用入口风速 U_{in} 进行量纲归一化。图中添加了 Nielsen 等^[21]的实验数据用于验证模拟的准确性。

固体壁面边界条件

除精度最低的X75T50,几乎所有工况模拟结果 均能再现 \bar{u} 和 $\sqrt{u'^2}$ 的分布趋势,且模拟精度有随着 δ_i 的减小而提高的趋势。X75T800和X75T1600中, \bar{u} 和 $\sqrt{u'^2}$ 均出现了轻微的空间数值振荡。而在X150 工况组中,X150T200的 \bar{u} 和 $\sqrt{u'^2}$ 都达到了最佳精 度。随着 δ_i 的减小,精度并未提高,反而出现了明显 的数值振荡,从而降低模拟精度。

本文采用式(9)所定义的L2误差范数^[17] ϵ_q 定量 评估模拟精度。式中 $q_{EXP}(r)$ 和 $q_{LEM}(r)$ 分别代表实 验和模拟中位置r处的物理量 q_{\circ} L2误差范数考虑 了 Nielson实验数据的所有点。 ϵ_q 越小代表模拟与 实验之间的误差越小,从而模拟精度越高。

$$\varepsilon_{q} = \sqrt{\frac{\sum_{r} (q_{\text{LBM}}(r) - q_{\text{EXP}}(r))^{2}}{\sum_{r} q_{\text{EXP}}^{2}(r)}} \qquad (9)$$

图4显示了不同 δ_i 时所有工况的L2误差范数变 化曲线。随着 δ_i 从1/50 s减小到1/200 s,X75工况 组中 \bar{u} 和 $\sqrt{u^2}$ 的误差均减小,随后则显著增大。可 以推测, δ_i 从1/50 s减小到1/200 s时的精度提升可 能是由于压缩性误差的减小;而 δ_i <1/200 s时精度 降低应该是由于超松弛导致,因为在这些工况中观 察到了 \bar{u} 和 $\sqrt{u'^2}$ 的数值振荡。对于X150工况组, $\delta_i = 1/200 \text{ s}$ 时,模拟精度最高,而后随着 δ_i 的减小 $\sqrt{u'^2}$ 的模拟精度迅速衰减,这也应归因于超松弛引 起的振荡。3.2和3.3节将深入讨论这些推测。

Bounce-back边界(无滑移)

3.2 压缩性误差的讨论

X75T50、X75T100和X75T200这三个工况的 模拟精度有较大差异,但其风速模拟结果并未显示 出明显的数值振荡,且三者的网格设置完全一致仅 δ_t 不同。这表明它们的精度差异极有可能是由于不 同 δ_t 导致的压缩性误差所引起,于是本节选择这三 个工况分析压缩性误差。

图5显示了三个工况中各区域的时间平均密度 $\bar{\rho}$ 与初始值 ρ_0 相比的相对偏差 $(\bar{\rho} - \rho_0)/\rho_{00}$ 如1.3 节所述,LBM-LES是一种伪可压缩模拟方法,即使 在模拟同一个不可压缩问题时,不同的 δ_i 设置亦会 导致密度变化显著。X75T50的 δ_i 较大,导致 $\bar{\rho}$ 明显 偏离了初始值,尤以入口附近区域更为明显。

图6显示了所有工况中整个模拟域的空间平均 密度相对于初始值的偏差。该偏差反映了LBM-LES计算中密度的压缩程度。随着δ_i减小一半,空 间平均密度的差异几乎呈指数衰减。当密度偏差小 于0.5%后逐渐达到稳定。此时的密度接近初始 值,可忽略压缩性的影响。

垂直截面上量纲一化 *ū* 及*M*的计算结果如图 7 所示。在X75T50中,来自入口的气流有远离天花 板向下的趋势,导致该区域的模拟结果精度较差。 据图 7b所示,该区域*M*大于该工况其他区域及其他

图 3 部分区域 \bar{u} 与 $\sqrt{u^{'2}}$ 的量纲一化模拟结果与实验结果对比

Fig. 3 Comparison of simulation and experiment results of normalized \bar{u} and $\sqrt{u^2}$ in some regions

工况的*M*,并超过了0.3。这与Krüger等^[17]的研究 一致。该研究建议LBM-LES模拟场中的由*u*^{1b}定义 的*M*不应大于0.3,否则将产生较显著的压缩性误差。同时,图5显示该区域密度变化剧烈。这再次

图 6 所有工况中全空间平均密度与初始值的相对偏差变化 Fig. 6 Deviation between spatial-averaged density and initial value of all cases

表明较大的密度梯度将会导致显著的压缩性误差。 随着M的降低,入口处的气流趋于水平,表明压缩性 误差可通过降低M得到一定的补偿。X75T50的其 他区域或其他工况中M均小于0.3,故可忽略ū的压 缩性误差。同时,X150工况组中M<0.3始终成立, 表明X150工况组的压缩性误差均不明显,因而 X150工况组中模拟精度并未随着δ,的降低而 提高。

以上讨论证实,在使用LBM-LES求解室内湍流时,过大的M会导致速度场产生明显的压缩性误差。通过调整δ,可减小M,以补偿误差。为了减少 压缩性误差造成的影响,应尽量保证流场中最大风

速区域的M < 0.3, 即 $\delta_t \ll \frac{\sqrt{3} \delta_x}{10 |\boldsymbol{u}^{\text{ph}}|}$ 。值得注意的

是,M是由**u**^h定义的格子玻尔兹曼单位的参数。即 使模拟问题原型相同,也可以通过使用不同的δ,改 变M,这与物理场中由真实速度定义的M不同。

3.3 超松弛导致的数值振荡讨论

3.1节图3显示,在X75T400、X75T800、 X75T1600工况和X150工况组中的大多数工况中均 观察到明显数值振荡,这可能由于超松弛碰撞模式 造成,本节将对此进行分析。图8显示了所有工况 的 f_0 在点(x, y, z) = (H, H/2, H/2)处当流场达到充 分发展后某个1s周期(第1080~1081s)内的松弛 状况。选择点(x, y, z) = (H, H/2, H/2)是因为在该 点处X75T50、X75T100和X75T200中没有明显的 振荡,而在其他工况中发生振荡,即存在一个振荡发 生的临界状况。图中 $f_0(t)/f_0^{eq}(t)$ 表明某一t时刻 f_0 与 f_0^{eq} 间的大小关系

在所有工况中,f₀围绕f₀^{eq}来回摆动,表明所有工 况都是超松弛碰撞模式,而不是理想的亚松弛模式, 此时f₀并不向f₀^{eq}呈指数衰减。这一结果证实了在湍 流中,超松弛碰撞模式比亚松弛更常见。在X75工 况组中,f₀摆动的"频率"随δ_i的减小而增大。同时 摆动"幅度"随δ_i减小而减小。从X75T50到 X75T200,摆动过程似乎没有形成数值振荡,而应该 是由湍流脉动导致。然而在X75T400、X75T800和 X75T1600中,摆动过程演化为可见的高频振动,与 速度场的模拟结果发生数值振荡的状况一致。类似 地,在X150组中,当δ_i降低到一定程度时,分布函数 形成了高频振动,最终形成了速度场发生数值振荡, 这在X150T1600至X150T3200之间尤为明显。

由此可见,当δ,减小到一定程度时,超松弛碰撞 模式所对应的湍流脉动会最终演化成分布函数的高

Fig. 7 Vertical distribution of normalized \bar{u} and M of some cases

频振动,并最终导致宏观速度场的数值振荡。然而, 超松弛碰撞模式何时演化为高频振动则较为复杂, 其与局部湍流的流动模式、网格尺寸、流体性质及碰 撞算子等都有很大关系,并非只与δ_i线性相关,故较 难判断数值振荡的临界δ_i。一般建议在消除压缩性 误差的前提下尽量增大δ_i以避免数值振荡。

Fig. 8 Over relaxation phenomenon in one second at (x, y, z) = (H, -H/2, H/2) of all cases

4 结论

本文分析并总结了采用含 BGK 碰撞算子的 LBM-LES模拟风环境问题时,时间步长δ,对模拟精 度的影响,并以室内气流模拟案例对其进行了定量 讨论。主要结论如下:

(1)LBM-LES 是一种伪可压缩方法,在处理不可压缩问题时模拟域中的密度在模拟过程中会发生变化。过大的δ,会使得密度变化较大,导致速度场产生压缩性误差。较小的δ,可以减小压缩性误差。

(2)在模拟湍流时,BGK碰撞算子通常表现为超松弛碰撞模式,即分布函数表现为一定程度的摆动。过小的δ,会导致摆动会演化成高频振动,最终使得速度场发生数值振荡。该现象在网格分辨率相对较高时更容易产生。

(3)在确定网格分辨率(如网格独立性测试)后, $\delta_t 应足够小以满足最大风速区域<math>M < 0.3$ (即 $\delta_t \ll \frac{\sqrt{3} \delta_x}{10 |\boldsymbol{u}^{ph}|}$)以减小压缩性误差。在此基础上尽量采用

较大的∂,以防止数值振荡的发生。

本文仅粗略确定了δ_i的取值上限,今后的工作 将着重于如何确定δ_i的合理范围,并建立δ_i与其他 物理量之间的定量关系。此外,对应于风环境中高 Re问题的模拟,通常采用比BGK更为复杂、鲁棒性 更高的碰撞算子(如MRT、cumulant LBM等), δ_i 的 变化对这些碰撞算子的影响也应予以进一步研究。

作者贡献声明:

韩梦涛:制定研究目标及内容,数值模拟,数据分析,论 文撰写及修订。

参考文献:

- ELHADIDI B, KHALIFA H E. Comparison of coarse grid lattice Boltzmann and Navier Stokes for real time flow simulations in rooms [J]. Building Simulation, 2013, 6 (2): 183.
- [2] HAN M, OOKA R, KIKUMOTO H. Lattice Boltzmann method-based large-eddy simulation of indoor isothermal airflow [J]. International Journal of Heat and Mass Transfer, 2019, 130: 700.
- [3] 李校,郑林.基于格子玻尔兹曼方法的室内颗粒运动模拟
 [J].南京理工大学学报, 2018, 42(5): 591.
 LI Xiao, ZHENG Lin. Numerical simulation of indoor particle motion based on lattice Boltzmann method [J]. Journal of Nanjing University of Science and Technology, 2018, 42 (5): 591.

- [4] HAN M, OOKA R, KIKUMOTO H. Validation of lattice Boltzmann method-based large-eddy simulation applied to wind flow around single 1:1:2 building model [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 206: 104277.
- [5] CHEN S, DOOLEN G D. Lattice Boltzmann method for fluid flows[J]. Annual Review of Fluid Mechanics, 1998, 30: 329.
- [6] 杜晓庆,李俊军,顾明,等.带上水线拉索绕流场的大涡模拟研究[J].同济大学学报(自然科学版),2016,44(8):1153.
 DU Xiaoqing, LI Junjun, GU Ming, *et al.* Large eddy simulation of flow around stay cable with upper rivulet [J]. Journal of Tongji University (Natural Science), 2016,44(8): 1153.
- [7] 郜阳,全涌,顾明.二维方柱绕流阻塞效应的大涡模拟[J].同 济大学学报(自然科学版),2018,46(8):1018.
 GAO Yang, QUAN Yong, GU Ming. Large eddy simulation of blockage effect on flow past a two dimensional square cylinder [J]. Journal of Tongji University (Natural Science), 2018,46(8):1018.
- [8] INAMURO T. The Lattice Boltzmann method and its applications for complex flows [J]. Journal of the Society of Powder Technology, 1999, 36(4): 286.
- [9] 韩梦涛. 基于LBM-LES 的室外湍流非稳态快速模拟方法的 开发[J]. 建筑科学, 2021, 37(10): 200.
 HAN Mengtao. Fast unsteady simulation of outdoor wind turbulence flow based on LBM-LES [J]. Building Science, 2021, 37(10): 200.
- [10] 王立军,吴光强.基于格子Boltzmann方法的液力变矩器导轮流场仿真[J].同济大学学报(自然科学版),2015,43(4):592.
 WANG Lijun, WU Guangqiang. Flow field simulation of stator cascade in automotive torque converters based on lattice Boltzmann method [J]. Journal of Tongji University (Natural Science), 2015,43(4):592.
- [11] BHATNAGAR P L, GROSS E P, KROOK M. A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems [J]. Physical Review, 1954, 94(3): 511.
- [12] REIDER M B, STERLING J D. Accuracy of discrete-velocity BGK models for the simulation of the incompressible Navier-

Stokes equations [J]. Computers and Fluids, 1995, 24 (4): 459.

- [13] HAN M, OOKA R, KIKUMOTO H. Derivation of fluid governing equations from the lattice Boltzmann equation Part 1 Chapman-Enskog expansion of the lattice Boltzmann equation (in Japanese) [C]//Proceeding of the Architectural Research Meetings, Kanto Chapter of Architectural Institute of Japan. Tokyo: Architectural Institute of Japan, 2018:199-202.
- [14] HAN M, OOKA R, KIKUMOTO H. Derivation of fluid governing equations from the lattice Boltzmann equation Part 2 Derivation of the continuity equation and Navier-Stokes equation (in Japanese) [C]//Proceeding of the Architectural Research Meetings, Kanto Chapter of Architectural Institute of Japan. Tokyo: Architectural Institute of Japan, 2018:203-206.
- [15] DONG Y H, SAGAUT P. A study of time correlations in lattice Boltzmann-based large-eddy simulation of isotropic turbulence[J]. Physics of Fluids, 2008, 20(3): 035105.
- [16] SKORDOS P A. Initial and boundary conditions for the lattice Boltzmann method [J]. Physical Review E, 1993, 48 (6): 4823.
- [17] KRÜGER T, KUSUMAATMAJA H, KUZMIN A, et al. The lattice Boltzmann method: Principles and practice [M]. Cham: Springer International Publishing, 2017.
- [18] LEMAIRE A D, CHEN Q, EWERT M, et al. Room air and contaminant flow, evaluation of computational methods, subtask-1 Summary Report [R]. Delft: International Energy Agency, 1993.
- [19] SMAGORINSKY J. General circulation experiments with the primitive equations [J]. Monthly Weather Review, 1963, 91 (3): 99.
- [20] MURAKAMI S. Comparison of various turbulence models applied to a bluff body [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1993, 46/47(C): 21.
- [21] NIELSEN P V, RONG L, OLMEDO I. The IEA Annex 20: Two-dimensional benchmark test for CFD predictions [C]// Clima 2010, 10th REHVA World Congress. Antalie: Turkish Society of HVAC and Sanitary Engineers, 2010: 1-8.