文章编号: 0253-374X(2022)11-1588-11

火灾下高强钢栓焊连接节点力学性能数值研究

强旭红1,舒 悦1,姜 旭1,董 浩2

(1. 同济大学 土木工程学院,上海 200092;2. 华设设计集团股份有限公司,江苏南京 210014)

摘要:采用ABAQUS对高强钢栓焊连接节点火灾下的力学 性能进行模拟,通过经验证的模型对高强钢栓焊连接节点进 行参数分析。结果表明:温度升高,节点的极限抗弯承载力 M_{max} 、节点塑性抗弯承载力 M_y 和节点的初始刚度 K_m 均降低; 强度较低钢材的节点匹配较厚的梁柱翼缘和腹板比强度较 高钢材的节点匹配较薄的梁柱翼缘和腹板,可获得相近的节 点塑性抗弯承载力以及相近或更高的节点转动能力,从而实 现节点优化设计。

关键词: 高强钢;火灾下;栓焊连接节点;力学性能;数值 研究

中图分类号:TU392 文献标志码:A

Numerical Study of Mechanical Behavior of High Strength Steel Flange-Welded Web-Bolted Connections in Fire

*QIANG Xuhong*¹, *SHU Yue*¹, *JIANG Xu*¹, *DONG Hao*² (1. College of Civil Engineering, Tongji University, Shanghai 200092, China; 2. China Design Group Co., Ltd., Nanjing 210014, Jiangsu, China)

Abstract: In this paper, ABAQUS was adopted to simulate the mechanical properties of high strength steel (HSS) flange-welded web-bolted connections in fire. Based on the validated numerical model, parametric analysis of HSS flange-welded web-bolted connections was conducted. It is shown that: as the temperature increases, $M_{\rm max}$, $M_{\rm y}$ and $K_{\rm ini}$ of the connections decrease correspondingly. Compared with the connections made of higher strength steel matched with thin beam-column flange and web, the connections made of lower strength steel matched with thick beam-column flange and web can obtain a similar plastic bending bearing capacity and rotational capacity, thus realizing the optimal design of connections.

Key words: high strength steel; in fire; flange-welded web-bolted connection; mechanical behavior; numerical study

钢材在常温下有较好的力学性能,在火灾高温 下力学性能退化,当温度达到400℃时,钢材的屈服 强度降至常温时的一半,当温度达到600℃时,钢材 基本丧失全部刚度和强度^[1]。钢结构发生火灾会造 成的人民生命财产、经济等的损失巨大。因此,火灾 安全是钢结构安全的重要考量^[16]。

梁柱节点是钢框架结构的重要连接部件,科研 领域对高强钢梁柱节点力学性能进行了相关研 究^[7-9]。Qiang等^[10-13]采用稳态和瞬态火灾试验方法 对欧标高强钢 S460、S690 以及 S960 进行静力拉伸 试验,提出针对高强钢的抗火设计建议及火灾后剩 余强度评定建议。刘希月等[14]对4个高强钢框架梁 柱栓焊连接节点足尺试件进行低周疲劳往复加载的 试验表明,当节点翼缘焊缝质量得以保证且采用有 效的构造措施时,高强钢框架梁柱节点能够表现出 较好的塑性变形能力和良好的断裂性能。李晓东 等^[15]对8个H型截面普通钢框架梁柱边节点(栓焊 连接、全焊连接以及端板连接节点)进行的抗火试验 结果表明,火灾高温下节点破坏形式与节点是否带 加劲肋有关,加劲肋的存在可显著改善节点的抗火 性能,而节点连接形式对节点抗火性能没有明显影 响。目前,梁柱栓焊连接节点在土木工程领域应用 广泛,而科研领域对梁柱栓焊连接节点在火灾高温 下力学性能的研究滞后,尤其对高强钢梁柱栓焊连 接节点抗火性能的研究,屈指可数。

为探究高强钢栓焊连接节点火灾高温下的力学性能,对高强钢Q690和Q960梁柱栓焊连接节点试

收稿日期: 2021-08-05

基金项目:国家重点研发计划重点专项(2020YFD1100403,2017YFB0304701);国家自然科学基金(51408150)

第一作者:强旭红(1984—),女,副教授,博士生导师,工学博士,主要研究方向为钢结构抗火及高性能钢在土木工程领域应用。E-mail:qiangxuhong@tongji.edu.cn

通信作者:姜旭(1982—),男,副教授,博士生导师,工学博士,主要研究方向为钢与组合结构及高性能钢在土木工程领域应用。E-mail:jiangxu@tongji.edu.en

件在550℃火灾高温下的力学性能进行足尺试验研 究,同时对上述节点在常温下的力学性能进行试验 研究,并进行对比分析,详见文献[16]。

在火灾试验研究中,不仅结构足尺试验的成本 昂贵,而且节点主要组件的应力、应变分布等不易通 过试验获得。此外,火灾试验中可监测数据少,而有 限元分析可准确模拟节点在加载过程中任意时刻某 一研究参数的变化。采用有限元软件对结构或构件 进行经济、高效的数值分析成为当前土木领域的一 种趋势^[17-19]。采用ABAQUS有限元软件对高强钢 栓焊连接节点力学性能进行数值模拟,从模型的几 何尺寸、单元类型、网格生成、接触定义等方面介绍 建模过程,通过有限元分析获得火灾高温下节点的 失效模态、*M*-θ关系曲线、节点抗弯承载力、节点初 始转动刚度以及节点转角,并通过试验结果验证数 值模拟的正确性。基于经验证的数值模型,对可能 影响高强钢栓焊连接节点力学性能的柱翼缘厚度、 柱腹板厚度、连接板尺寸、螺栓预紧力、螺栓直径、螺 栓强度等级、钢材强度等级以及环境温度进行参数 研究。

1 试验试件概况

试验中高强钢栓焊连接节点的设计参考欧洲钢 结构设计规范Eurocode3:Part1-8^[20]和中国钢结构设 计标准GB50017—2017^[21]。共设计并制作4个高强 钢栓焊连接节点试件,分别为Q690A1和Q960A1 (符号A表示常温下)与Q690E1和Q960E1(符号E 表示火灾高温下),具体试件尺寸如表1所示^[16],试 验设备及试验情况详见文献[16]。

表1 节点试件尺寸^[16] Tab.1 Dimension of connections^[16]

节点编号	梁/(mm×mm×mm)	柱/(mm×mm×mm)	连接板/(mm× mm×mm)	柱腹板加劲肋/ (mm×mm×mm)	螺栓
Q690A1	$H300{\times}180{\times}10{\times}12$	$H340{\times}200{\times}10{\times}12$	$200 \times 180 \times 10$	$316 \times 95 \times 12$	10.9级M27
Q960A1	$H250{\times}180{\times}10{\times}12$	$H300{\times}200{\times}10{\times}12$	$200 \times 180 \times 10$	$276 \times 95 \times 12$	10.9级M27
Q690E1	$H300{\times}180{\times}10{\times}12$	$H340{\times}200{\times}10{\times}12$	$200 \times 180 \times 10$	$316 \times 95 \times 12$	10.9级M27
Q960E1	$H250{\times}180{\times}10{\times}12$	$H300{\times}200{\times}10{\times}12$	$200 \times 180 \times 10$	$276 \times 95 \times 12$	10.9级M27

2 有限元模型

2.1 单元类型和网格划分

有限元模型的几何尺寸与试验节点试件尺寸一 致。有限元模型需进行弹塑性分析,且涉及的节点 组件多,各组件间需要定义多种接触关系,节点主要 部位需要划分精细的网格。

单元类型选用C3D8R单元,C3D8R单元能有效 模拟组件间的接触关系,并准确进行非线性分析,较 精确求解位移;当网格存在扭曲时,不会较大影响分 析精度;在弯曲荷载下不容易发生剪切自锁。在网 格划分中,靠近梁端、节点剪切域、螺栓、连接板、加 劲肋等部位划分精细网格,保证有限元分析结果正 确性。节点试件、梁、柱、连接板、螺栓以及螺母有限 元模型的网格划分如图1所示。

2.2 接触定义和分析步设置

在模型中,梁翼缘与柱翼缘间焊缝以及柱与柱 腹板加劲肋间焊缝均为实体建模,采用绑定约束。 连接板横截面和柱翼缘间为焊接,螺母与螺栓杆间 拧紧不会产生相对滑动,均采用绑定约束。绑定约 束如图2所示。连接板与螺栓帽、连接板与螺母以 及连接板与梁腹板均采用面面接触,滑移方式为有 限滑移,法向硬接触,切向摩擦系数0.4^[21]。螺栓杆 和螺栓孔(连接板螺栓孔、梁腹板螺栓孔)采用面面 接触,法向硬接触,切向不考虑摩擦作用。面面接触 如图3所示。

常温下有限元分析过程分为4个分析步:第1 步,临时约束螺栓自由度,并在螺栓轴线上施加10 N 的预紧力,设置初始温度场为20℃;第2步,解除对 螺栓的临时约束;第3步,固定所有螺栓的长度;第4 步,在梁端布有加劲肋的加载点处施加等效荷载。 其中,前三步可保证在减少计算量和分析误差的基 础上建立组件间的接触关系。火灾高温下有限元模 型前三个分析步与常温下相同,第4步,将模型温度 场调整为550℃;第5步,在梁端布有加劲肋的加载 点处施加等效荷载。

2.3 材料力学性能

高强钢Q690常温本构模型采用武念铎等^[22]的 材性试验结果,Q690高温材性以及Q960常温和高 温材性试验数据缺乏。因此,本文有限元分析所用 高温材性数据采用文献[10,13]的高温材性折减系 数,武念铎等^[22]的前期研究已验证该系数的合理性。

d 螺栓杆-螺母

图2 有限元模型中的绑定约束

Fig. 3 Surface to surface constraints in finite element model

高强螺栓常温及火灾高温下的力学性能采用参考文 献[23]的研究结果。

常温下高强钢Q690的应力-应变关系曲线如图 4所示,由图可知国产高强钢Q690有明显的屈服平台,国产高强钢Q960的屈服平台消失,但两者均表

现出较好的塑性。有限元模型中输入的应力和应变 为真实应力和真实塑性应变,按式(1)和式(2)求得:

$$\sigma_{\rm tr} = \frac{F}{A} = \frac{F}{A_0(L_0/L)} = \sigma_{\rm eng} (1 + \varepsilon_{\rm eng}) \qquad (1)$$

$$\epsilon_{\rm pl} = \epsilon_{\rm tr} - \epsilon_{\rm el} = \epsilon_{\rm tr} - \frac{\sigma_{\rm tr}}{E}$$
 (2)

式中:F为试件张拉荷载; A_0 和 L_0 为钢材试件的初始 截面面积和初始长度;A和L为钢材试件受载荷F作用的即时截面面积和即时长度; σ_{tr} 、 ε_{tr} 、 ε_{el} 分别为 钢材的真实应力、真实应变、塑性应变和弹性应变;E为弹性模量; ε_{eng} 和 σ_{eng} 为分别为钢材的工程应变和工 程应力。

 ϵ_{eng} 和 σ_{eng} 按式(3)和式(4)求得:

$$\epsilon_{\rm eng} = \frac{\Delta L}{L_0} \tag{3}$$

$$\sigma_{\rm eng} = \frac{F}{A_0} \tag{4}$$

真实应变与工程应变之间的转换关系如式(5)

图4 常温下高强钢Q690和Q960的σ-ε关系曲线

Fig. 4 σ - ε curves of Q690 and Q960 at ambient temperature

所示:

$$\epsilon_{\rm tr} = \int_{L_0}^{L} \frac{\mathrm{d}L}{L} = \mathrm{In} \frac{L}{L_0} = \mathrm{In}(1 + \epsilon_{\rm eng}) \qquad (5)$$

有限元模型校验 3

3.1 节点变形与应力分布

以Q960E1为例,图5为其在550℃火灾高温下, 高强钢栓焊连接节点试验结果与有限元结果破坏形 态的对比。有限元 Mises 应力和等效塑性应变 (equivalent plastic strain, PEEQ)应变能表征构件的 塑性发展情况和变形状态。由图可知,有限元结果 与试验结果一致,节点剪切域变形明显。有限元分 析还表明:剪切域在发生屈服后,屈服面积在荷载增 量较少的情况下会迅速扩展到整个剪切域,最终的 剪切域塑性发展充分。

图5 Q960E1最终变形形态的试验与有限元比较

Fig. 5 Comparison of final deformation modes between test and finite element simulation of Q960E1

550 ℃火灾高温下,Q960E1 栓焊连接节点各个 组件有限元结果和试验结果对比分别如图6~图8 所示。有限元各组件模拟的变形状态与试验结果 一致。

如图6所示,柱端翼缘发生屈曲;如图7所示,有 限元应力较大的位置为焊缝裂纹形成并发生扩展的 位置。此外,试验结果中Q960E1节点的柱的翼缘屈 曲程度略大于有限元结果,这是由于在试验中剪切 域过大会导致柱翼缘和柱腹板间焊缝开裂,而随着 焊缝裂纹的扩展,柱翼缘屈曲程度加大,而有限元只 能模拟焊缝开裂的位置,尚无法进一步模拟裂纹的 扩展过程。

3.2 节点弯矩-转角关系

将火灾高温下栓焊连接节点 Q690E1 和 Q960E1的 $M-\theta$ 曲线有限元结果与火灾高温试验结 果进行对比,同时,也将常温下的相关结果进行比 较,如图9所示。

由图可知:有限元结果在弹性段拟合效果较好, 但试验中节点塑性未能与有限元模拟一样充分发

图 6 Q960E1 节点柱翼缘弯曲变形试验与有限元比较

Fig. 6 Bending deformation modes in column flange between test and finite element simulation result of Q960E1

图7 Q960E1柱焊缝区域(受拉区)试验与有限元比较

Fig. 7 Weld zone (tensile zone) of column between test and finite element simulation result of Q960E1

a 试验

- 图8 Q960E1梁翼缘-柱翼缘焊缝区域(受拉区)试验与有 限元比较
- Fig. 8 Weld zone (tensile zone) of beam flange-column flange between test and finite element simulation result of Q960E

挥。这是由于火灾高温试验时,火灾炉内试验进展 无法观察,在节点Q690E1的 $M-\theta$ 曲线刚进入弹塑 性段、节点Q960E1的焊缝在弹性段提前开裂后试验 加载停止,节点变形状态如图6所示。

参数分析 4

在第3节已验证的有限元模型的基础上,在带 有加劲肋的梁右端施加竖向荷载。有限元模型中常 温钢材材性数据采用参考文献[22,24-25]的研究结 果;钢材高温材性取值是在常温力学性能(屈服强 度、抗拉强度、弹性模量)的基础上乘以相应的高温 力学性能折减系数。其中,名义屈服强度为460、 690、960 MPa高强钢材采用文献[10-13]提出的高温 力学性能折减系数,屈服强度为345 MPa钢材与高 强螺栓分别采用文献[26]和文献[27]提出的高温力 学性能折减系数。

图9 M-∂曲线试验与有限元比较

4.1 柱腹板厚度

不同柱腹板厚度(以下称为CW系列)对应的高 强钢栓焊连接节点的信息如表2所示,CW系列节点 的 $M-\theta$ 关系曲线如图10所示。在有限元分析中火 灾高温下节点 $M-\theta$ 曲线的下降段难以获得,故本文 以 θ_{max} 表征节点的转动能力。 节点的延性用延性系数 δ_d 表征, δ_a 按照式(6)

求得:

$$\delta_{\rm d} = \frac{\theta_{\rm y}}{\theta_{\rm max}} \tag{6}$$

由*M*-θ曲线获得的节点力学性能指标如表3 所示。

表 2 CW系列节点各组件信息 Tab. 2 Component information of the connections in CW series

编号	$t_{\rm cw}/{ m mm}$	柱/(mm×mm×mm)	梁/(mm×mm×mm)	连接板/(mm× mm×mm)	螺栓	钢材强度等 级
CW1	8	$H350{\times}200{\times}8{\times}12$	H300×200×8×10	$200 \times 200 \times 8$	10.9级M27	Q690
CW2	10	$H350{\times}200{\times}10{\times}12$	H300×200×8×10	$200 \times 200 \times 8$	10.9级M27	Q 690
CW3	12	$H350 \times 200 \times 12 \times 12$	H300×200×8×10	$200 \times 200 \times 8$	10.9级M27	Q 690

表3 CW系列节点力学性能

Tab. 3 Mechanical behavior of connections in CW series

编号	t _{cw} / mm	$M_{ m y}/$ (kN•m)	$\theta_{\rm y}/$ (mrad)	M _{max} / (kN•m)	$ heta_{ m max}/$ (mrad)	$K_{ m ini}/$ (kN• m)	δ_{d}
CW1	8	450.32	13.06	594.73	60.07	69 526	0.22
CW2	10	540.21	12.50	602.47	36.25	85 609	0.34
CW3	12	600.02	12.31	607.70	14.99	99774	0.82

由图10和表3可得出结论:在一定范围内,只改 变柱腹板厚度对*M*_{max}基本无影响;随柱腹板厚度的 增加,*M*_y和*K*_{mi}相应增大,极限转动能力θ_{max}下降。根 据式(6)可知:节点延性随柱腹板厚度的增加而增 大。对于高强钢栓焊连接节点,其变形主要来源于 节点域的剪切变形,柱腹板厚度增加,节点域剪切截 面积增大,抗剪变形能力增强,故*M*_y和*K*_{mi}增大,θ_{max} 减小。

4.2 柱翼缘厚度

不同柱翼缘厚度(以下称为CF系列)对应的高 强钢栓焊连接节点信息如表4所示,CF系列节点的 *M*-θ关系曲线如图11所示,由节点*M*-θ曲线获得 的节点力学性能指标如表5所示。

由图11和表5可得出结论:在一定范围内,只改 变柱翼缘厚度,对*M*_{max}、*M*_y和*K*_{ini}影响有限;随着柱翼 缘厚度的增加,*M*_{max}、*M*_y、*K*_{ini}分别略增长,而θ_{max}下降 明显。在加载后期,节点域柱腹板发生屈服,节点剪 切变形增大,增加的弯矩主要由柱翼缘和柱腹板加 劲肋承担,故*M*_{max}和*M*_y有所增加。此外,柱翼缘厚 度的改变对节点的延性无明显影响。

Tab 4 Component information of connections in CF series		表4 CF系列节点各组件信息	
Tab. 4 Component mormation of connections in Cr series	Tab. 4	Component information of connections in CF series	

编号	$t_{\rm cw}/{ m mm}$	柱/(mm×mm×mm)	梁/(mm×mm×mm)	连接板/(mm×mm× mm)	螺栓	钢材强度等 级
CF1	12	$H350{\times}200{\times}10{\times}12$	$H300{\times}200{\times}10{\times}12$	$200 \times 200 \times 10$	10.9级M27	Q 690
CF2	14	$H350{\times}200{\times}10{\times}14$	$H300{\times}200{\times}10{\times}12$	$200 \times 200 \times 10$	10.9级M27	Q 690
CF3	16	$H350{\times}200{\times}10{\times}16$	$H300{\times}200{\times}10{\times}12$	$200 \times 200 \times 10$	10.9级M27	Q 690

4.3 连接板尺寸

连接板高度不同(以下称为SH系列)和连接板

	mm	(kN•m)	(mrad)	(kN•m)	(mrad)	m)
CF1	12	550.15	12.80	750.23	81.46	8 6661
CF2	14	560.21	12.10	759.33	75.85	8 7852
CF3	16	570.46	11.86	766.26	71.79	8 7900

 $\theta_{\rm v}/$

M./

 $t_{\rm cf}$

编号

厚度不同(以下称为ST系列)高强钢栓焊连接节点 各组件尺寸如表6所示。SH和ST系列节点的*M-θ* 关系曲线如图12所示,由节点*M*-θ曲线获得的节 点力学性能指标如表7所示。

表5 CF系列节点力学性能

Tab. 5 Mechanical behavior of connections in CF series

M...../

	表6 SH和ST系列节点各组件信息	
ab. 6	Component information of connections in SH and ST serie	s

由图7可知各条曲线基本重合。由表7可知,随 连接板高度和厚度的增加, *M*_{max}和 θ_{max}分别略有增 大, 而*M*_v基本无变化。可得出结论:改变梁柱节点 的连接板厚度和高度,对节点的力学性能无显著 影响。

 $K_{\rm ini}$

(kN•

 $\delta_{\rm d}$

 $\theta_{\rm m}$

表7 SH和ST系列节点力学性能

Tab. 7 Mechanical behavior of connections in SH and ST series

系列	编号	$M_{ m y}/$ (kN•m)	$\theta_{\rm y}/$ (mrad)	$M_{ m max}/$ (kN•m)	$ heta_{ m max}/$ (mrad)	K _{ini} / (kN•m)	$\delta_{\rm d}$
	SH1	552.95	13.05	714.39	66.02	86 782	0.20
SH	SH2	550.25	12.59	732.43	75.06	86 811	0.17
	SH3	555.61	12.76	749.25	80.85	86 810	0.16
ST	ST1	557.05	12.95	739.81	76.03	86 484	0.17
	ST2	558.68	12.74	749.14	81.02	$86\ 497$	0.15
	ST3	550.38	13.03	755.96	84.91	86 005	0.15
	ST4	549.81	12.86	761.50	87.37	86 211	0.15

4.4 螺栓

螺栓预紧力(以下简称为P系列)分别取0、50、 100 以及 290 kN;螺栓公称直径(以下简称为D系 列)分别取20、24、27 mm;螺栓等级(以下简称为S 系列)分别取8.8S、10.9S。相应系列的高强钢栓焊 连接节点各组件信息分别如表8、表9所示。螺栓各 系列节点的*M*-θ曲线如图13所示,相应各系列节 点的力学性能指标见表10。 由图13和表10可知,改变螺栓的预紧力、螺栓 的公称直径及螺栓的等级,对节点的主要力学性能 基本无影响。对于高强钢栓焊连接节点,施加不同 的螺栓预紧力,只改变连接板和梁腹板之间的接触 压力,从而增大连接板和梁腹板之间的摩擦力,使剪 力传递更有效,但对节点最终的转动并无明显影响。 此外,高强钢栓焊连接节点的破坏一般不由螺栓控 制。故可得出结论:改变螺栓的预紧力、螺栓的公称 直径及螺栓的等级对节点的主要力学性能无实质性 的影响。

4.5 温度

对处于不同环境温度的栓焊连接节点的力学性 能进行研究,每个温度段包含Q345、Q460、Q690、 Q960四种强度等级的节点,柱尺寸为H350×200× 10×12,梁尺寸为H300×200×10×12,连接板尺寸 为200×200×10,高强螺栓等级为10.9级M27,根 据温度与钢材强度等级将试件分组编号,如表11 所示。

有限元分析获得温度系列节点的M-θ曲线如

表 8 P系列节点各组件信息 Tab. 8 Component information of connections in P series

编号	螺栓预紧 力/kN	柱/(mm×mm×mm)	梁/(mm×mm×mm)	连接板/(mm×mm× mm)	螺栓	钢材强度等 级
P1	0	$H350{\times}200{\times}10{\times}12$	$H300{\times}200{\times}10{\times}12$	200×200×10	10.9级M27	Q 690
P2	50	$H350{\times}200{\times}10{\times}12$	$H300{\times}200{\times}10{\times}12$	$200 \times 200 \times 10$	10.9级M27	Q 690
P3	100	$H350{\times}200{\times}10{\times}12$	$H300{\times}200{\times}10{\times}12$	$200 \times 200 \times 10$	10.9级M27	Q 690
P4	290	$H350{\times}200{\times}10{\times}12$	$H300{\times}200{\times}10{\times}12$	$200 \times 200 \times 10$	10.9级M27	Q690
P4	290	$H350 \times 200 \times 10 \times 12$	H300×200×10×12	200×200×10	10.9级MZ7	Q 690

表9 D和S系列节点各组件信息

Гab. 9	Component	information	of	connections	in	D	and	S	series
--------	-----------	-------------	----	-------------	----	---	-----	---	--------

系列	编号	柱/(mm×mm×mm)	梁/(mm×mm×mm)	连接板/(mm×mm×mm)	螺栓	钢材强度等级
	D1	$H350{\times}200{\times}10{\times}12$	$H300 \times 200 \times 10 \times 12$	$200 \times 200 \times 10$	10.9级M20	Q 690
D	D2	$H350{\times}200{\times}10{\times}12$	$H300{\times}200{\times}10{\times}12$	$200 \times 200 \times 10$	10.9级M24	Q 690
	D3	$H350{\times}200{\times}10{\times}12$	$H300{\times}200{\times}10{\times}12$	$200 \times 200 \times 10$	10.9级M27	Q 690
$\begin{array}{c} S \\ S \\ S \\ S \end{array}$	S1	$H350{\times}200{\times}10{\times}12$	H300×200×10×12	200×200×10	8.8级M27	Q 690
	$H350{\times}200{\times}10{\times}12$	$H300{\times}200{\times}10{\times}12$	$200 \times 200 \times 10$	10.9级M27	Q 690	

图 13 P、D 和 S 系列节点 $M - \theta$ 曲线

Fig. 13 $M-\theta$ curves of connections in P, D and S series

汨庄

表10 P、D和S系列节点力学性能

Tab. 10 Mechanical behavior of connections in P, D, and S series

系列	编号	$M_{ m y}/ m (kN{ullet m})$	$\theta_{\rm y}/$ (mrad)	M _{max} ∕ (kN•m)	$ heta_{ m max}/$ (mrad)	K _{ini} / (kN•m)	$\delta_{\rm d}$
	P1	558.62	13.12	709.19	68.86	85 628	0.19
Р	P2	557.65	13.65	711.04	69.27	83 305	0.20
	Р3	552.34	13.47	712.33	70.13	83 344	0.19
	P4	557.87	13.14	720.55	74.05	83 421	0.17
D	D1	551.23	13.25	715.98	71.64	83 382	0.18
	D2	551.43	13.18	715.98	71.64	83 400	0.18
	D3	551.37	13.10	713.92	70.87	83415	0.18
S	S1	552.06	13.20	720.18	73.13	83 455	0.18
	S2	551.37	13.10	713.92	70.87	83 415	0.18

表11 试件编号 Tab. 11 IDs of test specimens Q345 Q460 Q690 Q960

血反	Q345	Q_{400}	Q090	Q900
20°C	T1-1	T1-2	T1 - 3	T1-4
300°C	T2 - 1	T2-2	T2 - 3	T2-4
400°C	T3 - 1	T3 - 2	T3 - 3	T3 - 4
500°C	T4 - 1	T4-2	T4 - 3	T4-4
550°C	T5 - 1	T5-2	T5 - 3	T5-4
600°C	T6 - 1	T6-2	T6 - 3	T6-4
700℃	T7 - 1	T7 - 2	T7 - 3	T7-4

图 14 所示。由图可知,随温度的升高, *M*_{max}, *M*_y及 *K*_{in}下降。

图 14 温度系列节点 *M*-θ 曲线 Fig. 14 *M*-θ curves of connections in temperature series

将所有节点在相同温度下按照不同钢材强度等 级进行分类,其*M*−θ曲线如图15所示。由图可知, 在相同温度下,随节点钢材强度等级的提高,*M*_{max}增 大;在温度不高于300℃时,不同强度等级节点的*K*_{mi} 较为接近;在温度高于300℃时,不同强度等级的*K*_{mi} 相差较大,在700℃时,最大的*K*_{imi}与最小的*K*_{imi}差值 超过前者的50%。

在图 15g中,钢材强度等级为Q690的节点(编 号T7-3)位于4条曲线的最下方,这是因为文献[22] 中材性试验采用的Q690钢材材性离散性较大,有限 元模型中输入的材性值偏低;并且本文Q690高温力 学性能数据采用的为Q690常温材性试验数据乘以 S690高温折减系数,然而欧标钢与国产钢的生产加 工工艺不同可能导致高温折减系数不同,这可能是 误差的主要来源。 当节点在温度400 ℃~600 ℃时, M_y 、 M_{max} 和 K_{ini} 下降最快,大约仅为常温时的一半。当温度达到700 ℃时, M_y 不超过常温的12 %, M_{max} 约为常温的12 %~22 %, K_{ini} 不超过常温的15 %。

4.6 钢材强度等级与梁柱翼缘、腹板厚度的综合影响

不同强度等级(以下称为MG系列)对应的栓焊 连接节点各组件信息如表12所示,MG系列节点的 *M*-θ曲线关系如图16所示,对应节点的力学性能 指标如表13所示。

由图 16 和表 13 可知, MG1 与 MG2 的曲线、 MG3 与 MG4 的曲线一致。可得出结论:在一定范 围内,改变节点材料所用钢材强度等级,同时匹配合 适的梁、柱的翼缘厚度及腹板厚度,保持梁和柱的截 面高度不变,可获得相近的 My。随节点所用钢材强 度等级的提高,节点的塑性转动能力 θy和 θmax提高,

图15 相同温度下不同强度等级节点的M-θ曲线

Fig. 15 $M-\theta$ curves of connections made of different steel grades at the same temperature

	表12 MG系列节点各组件信息	
Tab. 12	Component information of connections in MG series	

编号	柱/(mm×mm×mm)	梁/(mm×mm×mm)	连接板/(mm×mm×mm)	螺栓	钢材强度等级
MG1	$H350{\times}200{\times}20{\times}24$	$H300{\times}200{\times}20{\times}24$	200×200×10	10.9级M27	Q345
MG2	$H350 \times 200 \times 16 \times 18$	$H300{\times}200{\times}16{\times}18$	$200 \times 200 \times 10$	10.9级M27	Q 460
MG3	$H350{\times}200{\times}10{\times}12$	$H300{\times}200{\times}10{\times}12$	$200 \times 200 \times 10$	10.9级M27	Q 690
MG4	H350×200×8×10	$H300 \times 200 \times 8 \times 10$	$200 \times 200 \times 10$	10.9级M27	Q 960
			_		

K_{mi}减小。在栓焊节点极限承载力相近的情况下,钢 材强度等级提高,节点所用的构件截面的翼缘和腹 板的厚度得以减小,使θ_y和θ_{max}提高。同时,构件截 面积的减小,导致节点的抗剪能力降低,从而使K_{mi} 减小。此外,由MG2~MG4的节点延性系数可知,

表13 MG系列节点力学性能

Tab. 13 Mechanical behavior of connections in MG

编号	钢材强 度等级	$M_{ m y}/$ (kN•m)	$\theta_{\rm y}/$ (mrad)	M _{max} ∕ (kN•m)	$\theta_{\rm max}/$ (mrad)	K _{ini} ∕ (kN•m)	$\delta_{\rm d}$
MG1	Q345	539.79	6.23	743.63	35.04	$170\ 540$	0.18
MG2	Q4 60	561.54	8.32	833.92	58.85	$131\ 300$	0.15
MG3	Q 690	550.36	12.89	718.47	62.17	86 703	0.21
MG4	Q 960	580.03	15.99	732.22	63.03	73 545	0.24

随钢材强度等级的提高,节点的延性也有所提高。

5 结论

(1)本文的有限元模型能正确模拟常温下和火 灾高温下高强钢梁柱栓焊连接节点的变形、M-θ曲 线关系和失效模态。 (2)只改变柱腹板厚度,对高强钢梁柱栓焊连接 节点的*M*_{max}基本无影响。随着柱腹板厚度的增加, *M*_y和*K*_{ini}相应增大, *θ*_{max}减小;只改变柱翼缘厚度,随 着柱翼缘厚度的增加, *M*_{max}、*M*_y、*K*_{ini}分别略增长, 而 *θ*_{max}下降明显。

(3)改变梁柱节点的连接板厚度和高度,对高强 钢梁柱栓焊连接节点的力学性能无显著影响;高强 钢梁柱栓焊连接节点的失效主要由焊缝控制,故在 一定范围内,改变螺栓预紧力、螺栓直径、螺栓强度 等级,对高强钢梁柱栓焊连接节点的力学性能无显 著影响。

(4)随着温度的升高, M_{max} 、 M_y 和 K_{ini} 均相应降低;高强钢梁柱栓焊连接节点在温度400 ℃~600 ℃ 时, M_{max} 、 M_y 和 K_{ini} 下降最快,大约仅为常温时的一 半;当温度达到700 ℃时, M_y 不超过常温时的12 %, M_{max} 约为常温时的12 %~22 %, K_{ini} 不超过常温时 15 %。

(5)在相同温度下,随节点钢材强度等级的提高,栓焊连接节点的*M*_{max}增大;在温度不高于300℃时,不同强度等级的*K*_{ini}较为接近;在温度高于300℃时,不同强度等级的*K*_{ini}相差较大,在700℃时,最大的*K*_{ini}与最小的*K*_{ini}差值超过前者的50%。

(6)在不改变节点梁、柱截面高度的情况下,通 过调整节点所用钢材强度等级,同时匹配合适的梁、 柱的翼缘厚度与腹板厚度,即强度较低钢材的节点 匹配较厚的梁柱翼缘和腹板,强度较高钢材的节点 匹配较薄的梁柱翼缘和腹板,可获得相近的节点塑 性抗弯承载力*M*_y,以及更高的节点的塑性转动能力 *θ*_y和极限转动能力*θ*_{max},从而实现节点优化设计与其 抗火性能的优化分析。

作者贡献声明:

强旭红:本研究的试验设计者和试验研究的执行人,完成数据分析、论文初稿的写作。

舒悦:参与试验设计和试验结果分析。

姜旭:项目的构思者及负责人,指导试验设计、数据分 析、论文写作与修改。

董浩:参与论文撰写与修订。

参考文献:

 李国强.现代钢结构抗火设计方法[J].消防科学与技术, 2002(1):8.
 LI Guoqiang. Modern fire resistance design method of steel

structure[J]. Fire Science and Technology, 2002 (1): 8.

[2] 方秦,杨石刚,陈力,等.天津港"8·12"特大火灾爆炸事故建 筑物和人员损伤破坏情况及其爆炸威力分析[J].土木工程学 报,2017,50(3):12.

FANG Qin, YANG Shigang, CHEN Li, *et al.* Analysis on the building damage, personnel casualties and blast energy of the "8·12" explosion in Tianjin port [J]. China Civil Engineering Journal, 2017, 50(3): 12.

- [3] 鞠竹, 王振清, 韩玉来, 等. 火灾高温作用下钢结构倒塌分析
 [J]. 工程力学, 2014, 31(S1): 121.
 JU Zhu, WANG Zhenqing, HAN Yulai, *et al.* Structure collapse analysis of steel frame under fire condition [J]. Engineering Mechanics, 2014, 31(S1): 121.
- [4] 李国强,王卫永.钢结构抗火安全研究现状与发展趋势[J]. 土木工程学报,2017,50(12):1.
 LI Guoqiang, WANG Weiyong. State-of-the-art and development trend of fire safety research on steel structures[J].
 China Civil Engineering Journal, 2017, 50(12):1.
- [5] 刘红波,杨德鹏,王小盾.火灾后空间结构材料强度无损检测 方法研究[J].天津大学学报(自然科学与工程技术版), 2017,50(S1):18.

LIU Hongbo, YANG Depeng, WANG Xiaodun. Nondestructive testing method of spatial structure material strength after fire [J]. Journal of Tianjin University (Science and Technology), 2017, 50(S1): 18.

- [6] 强旭红,张至毅,姜旭,等.火灾下超高强钢S960力学性能与 抗火设计建议[J].同济大学学报(自然科学版),2020,48 (5):673.
 QIANG Xuhong, ZHANG Zhiyi, JIANG Xu, *et al.* Fire performance and design recommendations of very high strength steel S960[J]. Journal of Tongji University (Natural Science), 2020,48(5):673.
- [7] 强旭红,石志伟,何旭,等.高强钢平齐式端板连接节点火灾
 后性能数值研究[J].同济大学学报(自然科学版),2019,47
 (4):482.

QIANG Xuhong, SHI Zhiwei, HE Xu, *et al.* Numerical study on post-fire behavior of high strength steel flush endplate connections [J]. Journal of Tongji University (Natural Science), 2019, 47(4): 482.

- [8] SUN F F, XUE X Y, XIAO Y, et al. Effect of welding and complex loads on the high-strength steel T-stub connection[J]. Journal of Constructional Steel Research, 2018, 150: 76.
- [9] SUN F F, XUE X Y, JIN H J, et al. Hysteretic behavior and simplified simulation method of high-strength steel end-plate connections under cyclic loading [J]. Journal of Constructional Steel Research, 2019, 158: 429.
- [10] QIANG X H, BIJLAARD F, KOLSTEIN H. Dependence of mechanical properties of high strength steel S690 on elevated temperatures [J]. Construction and Building Materials, 2012, 30: 73.
- [11] QIANG X H, BIJLAARD F S K, KOLSTEIN H. Deterioration of mechanical properties of high strength structural steel S460N under transient state fire condition [J]. Materials and Design, 2012, 40: 521.
- [12] QIANG X H, BIJLAARD F S K, KOLSTEIN H.

Deterioration of mechanical properties of high strength structural steel S460N under steady state fire condition [J]. Materials and Design, 2012, 36: 438.

- [13] QIANG X H, JIANG X, BIJLAARD F S K, et al. Mechanical properties and design recommendations of very high strength steel S960 in fire [J]. Engineering Structures, 2016, 112: 60.
- [14] 刘希月,王元清,石永久,等.高强度钢框架梁柱节点低周疲 劳断裂性能试验研究[J].建筑结构学报,2018,39(2):28.
 LIU Xiyue, WANG Yuanqing, SHI Yongjiu, *et al.*Experimental study on low-cycle fatigue fracture behavior of high strength steel beam-to-column connection [J]. Journal of Building Structures, 2018, 39(2):28.
- [15] 李晓东,董毓利,高立堂,等.钢框架边节点抗火性能的试验研究[J].实验力学,2007(1):13.
 Li Xiaodong, Dong Yuli, Gao Litang, *et al.* Experimental investigation of the performance of exterior joints for steel frames under fire circumstance [J]. Journal of Experimental Mechanics, 2007(1):13.
- [16] 强旭红,舒悦,姜旭.高强钢栓焊连接节点火灾下力学性能试验研究[J].同济大学学报(自然科学版),2022,50(10):1432. QIANG Xuhong, SHU Yue, JIANG Xu. Experimental study on mechanical behavior of high strength steel flange-welded web-bolted connections under fire condition [J]. Journal of Tongji University (Natural Science), 2022,50(10):1432.
- [17] 李雪冰,曹金凤,危银涛.空气弹簧多变过程的有限元模拟
 [J].工程力学,2019,36(2):224.
 LI Xuebing, CAO Jinfeng, WEI Yintao. Finite element modelling on polytropic process of air springs [J]. Engineering Mechanics, 2019, 36(2):224.
- [18] 牟犇,李茜,王燕,等.外加强环不等高H型钢梁-方钢管柱节 点受力性能有限元分析[J].建筑结构学报,2018,39 (10):103.

MOU Ben, LI Xi, WANG Yan, *et al.* Numerical investigation on mechanical behavior of unequal-depth H-shaped steel beams to square steel tubular column joint with external diaphragm[J]. Journal of Building Structures, 2018, 39(10): 103.

- [19] 赵卫平,朱彬荣.高温后HSC粘结滑移基础参数测量与3D有限元数值模拟[J].工程力学,2017,34(4):177.
 ZHAO Weiping, ZHU Binrong. Basic parameters test and 3D modelling of bond in HSC after elevated temperatures [J]. Engineering Mechanics, 2017, 34(4):177.
- [20] European Committee for Standardization. Eurocode 3, design

of steel structures, part 1-8. Design of joints: EN 1993-1-8 [S]. Brussels: CEN, 2005.

- [21] 中华人民共和国住房和城乡建设部.钢结构设计标准: GB50017—2017[S].北京:中国建筑工业出版社,2017. Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for design of steel structures: GB50017—2017[S]. Beijing: China Architecture & Building Press, 2017.
- [22] 武念铎.高强钢端板连接节点火灾性能研究[D].上海:同济 大学,2018.
 WU Nianduo. Study on fire performance of high-strength steel

end-plate connections[D]. Shanghai: Tongji University, 2018.

- [23] 殷颖智.钢结构高强螺栓受拉及受剪连接在高温(火灾)下的 性能[D].上海:同济大学,2001.
 YIN Yingzhi. Performance of tensile and shear connections of high strength bolts in steel structures under high temperature (fire)[D]. Shanghai: Tongji University, 2001.
- [24] 王卫永, 刘兵, 李国强. 高强度Q460钢材高温力学性能试验研究[J]. 防灾减灾工程学报, 2012, 32(S1): 30.
 WANG Weiyong, LIU Bing, LI Guoqiang. Experimental study on mechanical properties of Q460 high strength steel at elevated temperature [J]. Journal of Disaster Prevention and Mitigation Engineering, 2012, 32(S1): 30.
- [25] 罗云蓉,王清远,刘永杰,等.Q235、Q345钢结构材料的低周 疲劳性能[J].四川大学学报(工程科学版),2012,44 (2):169.

LUO Yunrong, WANG Qingyuan, LIU Yongjie, *et al.* Low cycle fatigue properties of steel structure materials Q235 and Q345[J]. Journal of Sichuan University (Engineering Science Edition), 2012, 44(2); 169.

- [26] 李国强,陈凯,蒋首超,等.高温下Q345钢的材料性能试验研究[J].建筑结构学报,2001(1):53.
 LI Guoqiang, CHEN Kai, JIANG Shouchao, *et al.* Experimental studies on the high-temperature material properties of Q345 steel [J]. Journal of Building Structures,
- 2001(1):53.
 [27] 李国强,李明菲,殷颖智,等.高温下高强度螺栓20MnTiB钢的材料性能试验研究[J]. 土木工程学报,2001,34(5):100.
 LI Guoqiang, LI Mingfei, YIN Yingzhi, *et al.* Experimental studies on the behavior of high-strength bolts made of 20MnTiB steel at elevated temperatures [J]. China Civil Engineering Journal, 2001, 34(5):100.