
第 50 卷第 S1 期
2022 年 12 月

同济大学学报（自然科学版）
JOURNAL OF TONGJI UNIVERSITY（NATURAL SCIENCE）

Vol. 50 No. S1
Dec. 2022

基于卷积神经网络感知功能的极端场景生成方法

Kun GAO1， Hans⁃Christian REUSS2

（1. 斯图加特汽车工程与车辆发动机研究所（FKFS），斯图加特 70569，德国；

2. 斯图加特大学 汽车工程学院（IFS）， 斯图加特 70569，德国）

摘要：近年来，基于卷积神经网络深度学习的感知算法在自

动驾驶车辆环境感知系统中发挥着越来越重要的作用。由

于在神经网络训练过程中，训练数据无法覆盖所有极端场

景，因此如何保证基于深度学习的感知算法在极端场景下的

安全性和可靠性，仍是一个亟待解决的问题。传统的基于真

实行驶里程的验证方法，在获取极端场景数据上危险性高，

经济性差，因此很难检验驾驶功能在极端场景下的性能。基

于虚拟场景的仿真验证方法，虽然可以通过设置场景参数来

生成大量测试场景，但是通过简单的参数组合并不能有效的

生成极端场景。本文展示了一种在虚拟环境中生成极端场

景的方法，用于训练和测试基于深度卷积神经网络的车道线

识别算法。首先将场景特征用参数进行表示，然后使用deep
Q⁃learning 强化学习的方法，来生成极端场景的参数组合。

通过与随机组合以及成对组合场景参数的方法进行对比，可

以看出该基于强化学习的场景生成方法可以更有效地生成

极端场景，因此可提高自动驾驶感知功能的测试效率，同时

可为卷积神经网络提供更多的极端场景训练数据。

关键词：自动驾驶；极端场景；卷积神经网络；强化学习

中图分类号： TP389. 1 文献标志码： A

Corner Cases Generation for Virtual
Scenario-based Testing of CNN-based
Autonomous Driving Function

Kun GAO1， Hans-Christian REUSS2

（1. Research Institute of Automotive Engineering and Vehicle
Engines Stuttgart（FKFS）， 70569 Stuttgart， Germany； 2. Institute
of Automotive Engineering（IFS）， University of Stuttgart， 70569
Stuttgart， Germany）

Abstract： Deep learning-based perception algorithms
have gained importance in autonomous vehicle perception
systems in recent years. Since the training data cannot
cover all critical scenarios and corner cases， how to
ensure the safety and reliability of deep learning-based

perception functions in crucial scenarios is still an open
challenge. Conventional approaches test the driving
functions in real-life environments， which can be risky
and uneconomic to validate in corner cases. Virtual
scenario-based simulation validation approaches can
generate a large number of test cases by setting test
scenario parameters， but the purely combinatorial
parameter cannot effectively generate corner cases. In this
paper， we present a novel approach to generating corner
cases in a virtual environment for validation of a CNN
（Convolutional Neural Network）-based lane detection
function. We represent the scene features with
parameters， and then use the deep Q-learning
reinforcement learning approach to generate the
parameter combinations of corner cases. In addition， by
comparing with the approaches of random combination
and pairwise combination of scene parameters， our
approach can generate corner cases more efficiently and
improve the testing efficiency of the autonomous driving
perception functions.

Key words： automated driving； corner case；

convolutional neural network； reinforcement learning

Autonomous driving is one of the key topics in
research and industry. Through many sensors （e. g.
vision sensors， radar， lidar， etc.）， self-driving
vehicles can recognize their surroundings and identify
potential hazards to ensure a safe driving. Since
convolutional neural networks can automatically
extract features with generalization ability and
robustness， it is increasingly used in environment
perception functions， especially vision-based
environment perception functions in autonomous

文章编号： 0253⁃374X（2022）S1-0119-09 DOIDOI：10. 11908/j. issn. 0253-374x. 23707

收稿日期： 2022-09-10
第一作者： Kun GAO（1990—），男，理学硕士，主要研究方向为汽车机电一体化。E-mail： kun. gao@fkfs. de
通信作者： Hans-Christian REUSS （1959—）， 男，教授，工程学博士，主要研究方向为汽车机电一体化。

E-mail： hans-christian. reuss@ifs. uni-stuttgart. de

同 济 大 学 学 报（自 然 科 学 版） 第 50 卷

driving. However， how to effectively test the safety
and reliability of deep learning-based perception
algorithms， especially in corner cases， is still an open
challenge.

Conventional validation methods require the
accumulation of a certain number of safe driving
miles. According to Lipinski［1］ ， the self-driving
vehicle must complete a distance of 6. 14 billion km of
safe driving range on public roads before they can be
awarded approval for series production. A
considerable part of the driving scenarios on public
roads is common scenarios， which are not very
helpful for validating the algorithm. Furthermore， the
number of corner cases in real-live driving is limited.
It is unsafe for drivers and other traffic participants
when acquiring data of corner cases. This is not an
option to validate autonomous driving functions with
such a long test distance in terms of economy，
feasibility， and safety.

Another validation method is the scenario-based
validation method. By validating the autonomous
driving function in different test scenarios as well as
critical scenarios to determine the safety and reliability
of the driving functions. For the scenario-based
method， a large number of test scenarios can be
constructed effectively and reproductively through the
combination of scenario parameters. ［2］ Moreover，
critical scenarios and corner cases can be generated in
the virtual world by utilizing the simulation software.
The scenario-based virtual validation method can be
effortlessly combined with Model-in-the-Loop and
Software-in-the-Loop test methods， to support the
full development process from the system
development stage to the system testing stage.
However， the scenario describing parameter space
usually very huge， the corner case scenarios cannot
be generated effectively by simple combination of
scenario parameters. For this reason， an effective
method is needed to search for corner case scenario
parameter combinations in the massive parameter
space.

1 Corner case and scenario-based
validation method

The deep learning algorithms in autonomous
driving need to be trained with a large quantity of
data. To improve the reliability and safety of deep
learning algorithms in real-live driving， more data is
needed， especially the data from uncommon scenarios
or even dangerous scenarios in the real world. These
scenarios or scenes are called corner cases. According
to Kowol et al. ［3］， corner cases include anomalies，
unknown objects or outliers， which are outside of
training data of deep learning algorithm. Moreover，
corner cases are relative to the normal driving
scenarios. Corner cases occur infrequently and
usually represent that the vehicle is in critical
situation. Since a corner case is also a scenario， a
scenario-based method can be used to generate corner
cases in different situations.

Scenario-based validation method plays an
essential role in the testing of autonomous driving
functions in recent years. Scenarios are generally to
substantiate test cases for autonomous driving
functions［4］. Therefore， the scenario-based validation
method can be used to generate uncommon scenarios
as corner cases to support the training and validation
of deep learning functions in autonomous driving.
There are many scenario description methods in the
current research field， among which the
representative ones are：

The Pegasus project［5］ presented a 6-layer
scenario description model to categorize the traffic
elements. Exchangeable and reproducible scenarios
can be defined with the 6-layer model.

Ebner［6］ allocates three components to the
scenario：

- Ego-vehicle： defines some parameters of the ego
vehicle itself.

- Traffic participants： other vehicles， pedestrians，
bicycles， etc.

- Environmental elements： roads， infrastructure，
weather， light， and other objects.

The scenario description method provides the
basic elements needed to describe the scenario. The

120

第 S1 期 Kun GAO，等：基于卷积神经网络感知功能的极端场景生成方法

scenario elements can be selected to generate the
required study scenarios. Then， the scenario
extraction method is used to select the hazard
scenarios as corner cases.

Ahmed［7］ et al. proposed a narrative-based
scenario generation methodology to generate
challenging scenarios in virtual environment. Ahmed
et al. used CARLA virtual environment for a
generation s set of scenarios of different weather
conditions and different number of traffic participants
for analyzing the driving performance of an Artificial
Intelligent（AI） agent in simulation. Challenging
scenarios are represented by the complexity of the
scenario. Song［8］ et al. establish an approach for
critical test scenario identification by selecting the
parameters of critical scenarios with an optimization
model. The optimization model generates the next
new scenario with distinct parameter values， which
works as the test scenario for the simulation platform.
Kowol［3］ et al. purposed an approach to generate
synthetic corner cases using a human-in-the-loop. In
the test loop， a human as the driver controls the
vehicle according to the semantic segmented images
from an AI function. Another human as the safety
officer， observes the original images to determine

whether the driver has misunderstood the semantic
segmented images. When the safety officer thinks
that the driver has misunderstood the scene， the
scene will be stored as corner cases. These corner
case generation methods employ simulation tools to
rapidly generate a large number of virtual scenarios
that provide data for training， validation， and testing
of AI functions. However， these methods have some
weaknesses， such as the inefficiency and low
automation of corner case generation.

Motivated by the study of Kowol［3］， we focus on
automatic corner cases generation for CNN-based
autonomous driving function and employ a deep Q-

learning approach to generate parameter combinations
of relevant and critical scenes. In this paper， we
introduce a method for corner case generation in the
virtual world and used CNN-based lane detection as
an example. Environmental elements are the main
factors affecting CNN-based lane detection.
Therefore， in this approach， we use Ebner's scenario
description method［6］ to model the scene. The lane
detection algorithm uses the encoder-decoder U-Net
to perform image semantic segmentation of lane lines
and backgrounds. The network architecture is shown
in the Fig. 1.

The input is the front-view camera image. The
network performs a binary classification of each pixel
point of the image to determine whether it belongs to
the lane line or the background. The difference
between the predicted lane lines and Ground Truth is
calculated to determine whether the lane lines are
correctly detected. Since the number of lane line

pixels is significantly less than the number of
background pixels in the road scene， the training data
is imbalanced. Dice Loss［9］ is used to calculate the
difference between the predicted lane lines and ground
truth. Dice Loss takes a value between 0 and 1. The
larger the difference between the predicted value and
the target value， the more inaccurate the classification

Decoder-Network Encoder-Network

Predicted lane Road with marking

CNN Lane Detection

Fig. 1　CNN-based lane detection

121

同 济 大 学 学 报（自 然 科 学 版） 第 50 卷

is， and the closer the dice loss is to 0.

Dice loss = 1 - 2 || X ∩ ||Y
|| X + ||Y

The recognition target for the lane detection
algorithm is the lane marking. Therefore，
environmental elements are mainly considered for
description of the scene， for example， road
curvature， lighting conditions， weather conditions，
etc.

In this paper， corner cases are defined as： when
the lane detection algorithm cannot correctly
recognize the lane line in this scene， then the scene is
saved as a corner case. A threshold of the difference
between the predicted and the target can be used to
determine whether the lane lines are correctly
detected.

2 Concept for corner cases generation

In this section， the corner cases generation
method for the CNN-based lane detection algorithm is
presented. The environment parameters are used to
describe the scene， and then modeling software is
used to transform the scene parameters into virtual
camera pictures. The system under test is a CNN-

based lane detection algorithm. The test results are
analyzed to determine whether the input scenes are
corner cases.
2. 1　Corner case generation process　

The corner case generation process is as follows：
（1） Initialize the environment parameters；
（2） Generate virtual scenes；
（3） Execute the test；
（4） Analyze the test results；
（5） Store the parameters of corner cases.
The environment parameters are first randomly

initialized by using a stochastic algorithm to generate
the initial scene parameter combinations. The scene
parameters are through the API of the scene modeling
software as input into the scene modeling software to
generate the virtual scene. The front camera pictures
of the virtual scene are acquired by the virtual camera.

During the execution of the test， the camera
pictures are entered the lane detection network as

input data and the lane pixels in the pictures are
predicted by the CNN algorithm. The difference
between the predicted lane line and the target lane line
is analyzed to determine whether the scene is a corner
case. In the corner case， the CNN network cannot
recognize the lane lines correctly. Therefore， the
combination of corner case parameters can be stored
on the computer to be subsequently retrained to the
network. The performance of the CNN network can
be improved.
2. 2　Deep Q learning in corner cases generation

After storing the parameters of the corner cases，
the new combination of parameter can be generated
by looping. This is a decision process to decide how
to update the parameters and the combination of
parameters. So we can take an action to update a
scene parameter， and the state after the decision is the
virtual world scene， which can be generated after
updating the parameter.

How to adopt an effective strategy to update the
parameter combination can be solved by using Q-

learning reinforcement learning. When the state-

action pairs have a large dimensionality， deep Q-

learning can be used to approximate the Q-table in Q-

learning. Therefore， to improve the testing efficiency
as well as to generate the corner cases more
efficiently， the deep Q-learning reinforcement
learning algorithm was used in our work.

In the above corner cases generation process
（4）， the test result is the difference between the
predicted lane line and the target lane line.
Therefore， the scene parameters and the
corresponding test results can be used as input to
generate the next parameter combination using deep
Q-learning reinforcement learning. A corner case
generation module based on deep Q-learning can be
added after （4） to generate new scene parameters.

Fig. 2 shows the corner case generation process
using deep Q-learning reinforcement learning. It can
be assumed that the corner case generation module is
an intelligent agent， which can change the scene
parameters （states） through a series of actions
（actions） and then generate a new scene parameter.
After the action of the agent， we can define that the

122

第 S1 期 Kun GAO，等：基于卷积神经网络感知功能的极端场景生成方法

environment gives a positive reward when the agent
generates a corner case and gives a penalty when it
generates a normal scene. The intelligent agent
interacts with the environment and constructs a Q-

table corresponding to the rewards and penalties， so
that the agent can prioritize the actions that generate
corner cases according to the Q-table. Q-table is
updated with the formula：［10］

Qnew (st， at)= (1 - α)Q (st， at)+ α (rt +

γ max
a

 Q (st + 1，a))
where： rt is the reward when moving from the state st
to the state st + 1； α is the learning rate （0 < α < 1）； γ
is the discount factor （0 < γ < 1）. The learning rate
determines the extent to which the newly acquired
information replaces the old information. The
discount factor determines the importance of future
rewards. The smaller the discount factor， the more
short-sighted the Q-learning Agent is， and only cares
about the rewards currently available.

The parameter space consisting of environmental
parameters in this work is huge， and the
corresponding Q-table will be too large to be
completely stored in computer memory. Thus， a
neural network can be used here to approximate the
Q-table.

During the training process of deep Q-learning，
states， actions， environmental rewards and the next
state can be stored in an experience pool， and then a
small batch of experience can be randomly sampled
from the experience pool as training data and used to
update the estimation of the Q-value. This method of
using experience to train a neural network is called
Experience Replay［11］. Through experience replay，

the intelligent agent can learn from previous
experience， not just from current experience， and
avoid forgetting what it has already learned. In
addition， traditional deep-Q-learning uses only one
neural network to estimate the Q-table. When the
training data have fluctuations， it will cause
inaccurate estimation of the updated Q-value
according to the formula［10］， which will affect the
deep-Q-learning performance and robustness.
Therefore， a fixed Q-targets-Network［11］ can be
adopted as a second neural network to calculate the
maximum Q-value for the next state. The Q-value in
fixed Q-targets-Network is updated with the formula：

yt = rt + γ max
a

 Q (st + 1，a)
The parameters in fixed Q-targets-Network are

generally updated less frequently to avoid Q-value is
overestimated or underestimated， which improves the
robustness of the algorithm. The network is trained
using mean squared error as the loss function.

3 Implementation

Corner cases are a challenge for deep Learning
algorithms. Generating as many reproducible corner
cases as possible can support improving the
performance of training and inference. Collecting
corner cases in the real world is not an option，
because corner cases occur infrequently and are
usually dangerous when they occur. For this
purpose， we used the autonomous driving simulator
CARLA［12］ to generate a virtual world in this work.
CARLA is an open source virtual scenario generation
software whose scenarios are modeled using Unreal
Engine and can generate different road traffic
scenarios to develop and test autonomous driving AI

Fig. 2　Corner cases generation

123

同 济 大 学 学 报（自 然 科 学 版） 第 50 卷

algorithms. CARLA provides flexible APIs to define
scenario parameters such as roads， traffic
participants， weather， lighting， and road water.
Fig. 3 shows the virtual scenes generated in CARLA.

As a case study for the visual detection
algorithm， we mainly consider the parameters that
have an impact on the camera image， such as
Weather， lighting， road condition， and sensor failure
are the main influencing factors of camera-based lane
detection. Considering the used CARLA （Version
0. 9. 10） only cloudiness， precipitation， wind

intensity， sun azimuth and fog as weather factors can
be applied. The cloudiness and wind intensity have
less influence on camera-based lane detection. The
precipitation in CARLA lacks the distortion caused by
raindrops on the windshield compared the real scene.
Therefore， we only consider the sun azimuth and fog
as weather factors in this case study. Lighting， road
condition and sensor failure are adjusted using the
parameters in the CARLA API. The following 6
scene parameters and their value ranges are defined in
this paper.

- Road curvature： when the road curvature is
negative， it is a left-turn road； when the road
curvature is equal to 0， it is a straight road； when the
road curvature is positive， it is a right-turn road. The
value range ［－1， 1］， where -1 means left turn， 0
means straight ahead， and +1 means right turn.

- Ambient brightness： set by the sun altitude
angle in CARLA， its value range is ［－90， 90］，
where －90 is late night， +90 is noon

- Sun azimuth： indicates the azimuth of the sun
in the sky in the CARLA world， and its value range
is ［0， 360°］.

- Fog density： weather parameter in CARLA
world， indicating the visibility of vehicles， the range
of values is ［0， 100］. When this parameter is 0， the
weather is clear， and the visual distance is
unrestricted. In contrast， when this parameter is
100， the visual distance is highly limited，
approximately around 10 meters.

- Water on the road： indicates whether there is
water on the road surface， the value range is ［0， 1］，
where 0 means the road is dry and 1 means there is
visible water on the road.

- Blurring caused by the dirty lens： the value
range ［0， 1］， where 0 means the lens is clean and the
screen is normal； 1 means the lens is dirty and the
screen is blurred.

Different scenes can be generated by changing
the above six parameters and the corresponding
combinations of parameters in the process of corner
case generation. The agent in deep Q-learning model
proposes to change the scene parameter so that
different combinations of parameters are created. The
agent can make 6 actions with 6 scene parameters.
After executing an action， the environment generates
a new state and rewards， which is in the CARLA
virtual world. The environment rewards are related
to the predicted result of the lane detection algorithm.
The relation between actions and states can be
approximated by a neural network. The agent in Q-

learning always chooses the optimal action to get the
maximum reward. However， only exploiting the
current knowledge may lead to sub-optimal behavior.
For the exploration of new options， we apply an
epsilon-greedy approach to ensure that the agent has a
probability to choose a random action for exploration，
instead of always exploiting with prior knowledge.

Metric for corner cases： A threshold can be set
to determine whether the lane lines in a scene are
correctly detected or not. In this work， we assume
that if the dice loss between the predicted and true
values is greater than 0. 5， the lane lines of the scene
will be considered as not correctly recognized.

Fig. 3　CARLA virtual scenes

124

第 S1 期 Kun GAO，等：基于卷积神经网络感知功能的极端场景生成方法

4 Results

4. 1　Number of corner cases　
To test the deep Q-learning corner cases

generation approach， we generated 20，000 test
scenes. The number of scenes in which lane cannot
be accurately recognized is 11148， of which 56% are
corner cases. As a comparison， we used two other
approaches to generate test scenes：

- Random Testing： 20，000 test scenes were
generated using a combination of randomly selected
scene parameters. The number of scenes in which the
lane cannot be recognized is 4833， accounting for
24%.

- Combination Testing ［13］： We used pairwise
testing to combine discrete scene parameters， by the
Microsoft PICT Tool to generate 2nd order
combination test cases. A total of 18281 test scenes
were generated， with 4092 scenes being corner
cases， accounting for 22%.

Therefore， the deep Q-learning reinforcement
learning method generates a higher percentage of
corner cases. The corner cases generation approach is
more effective. Fig. 4 shows the comparison of the
corner cases generated by the random testing，

combination testing and the deep Q-learning
reinforcement learning method.
4. 2　Analysis of corner cases　

Different scene parameters have different effects
on the CNN-based lane detection algorithm. Fig. 5
shows the effects of ambient brightness， water on the
road， and dirty lens on the tested CNN algorithm. It
can be observed that the lane detection algorithm is
not accurate when the ambient brightness is low，
when there is no water on the road （reflective effect
of the dry road）， and when the lens causes blurred
images due to dirty lenses.

Some of the generated corner cases are shown in
Fig. 6. For example， （a） shows the blurred image
caused by dirty lens， （b） the reflection phenomenon

of water on the road surface under sunlight， （c）
waterlogged road surface at night， and （d） dry road
surface under high ambient brightness.

24% 22%

56%

76% 78%

44%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Random Testing Combination Testing Deep Q-Learning

Proportion of generated cases

normal cases

corner cases

Fig. 4　Comparison of corner cases generated by
random testing, combination testing and deep
Q-learning

Fig. 5　Corner cases scene parameter distribution

125

同 济 大 学 学 报（自 然 科 学 版） 第 50 卷

5 Conclusions and outlook

In this paper， we demonstrate a method to
validate CNN-based perception functions through
virtual tests and employ deep Q-learning
reinforcement learning to generate corner cases. By
comparing with the methods of random testing and
combination testing， this method can generate corner
cases effectively and improve the testing efficiency.

In the future some potential improvements can
be explored：

（1） More parameters can be considered to
describe the environment and increase the
environment details， such as precipitation， snow， the
number of lanes， road users， etc.

（2） In this work we mainly analyze the scene in
the corner case， and the scenario parameters are
independent of time. Future research can be extended
to dynamic scenarios， such as scenario parameters
changing with time.

（3） Other reinforcement learning methods can
be used to analyze the corner case in perception，
decision making， and control algorithms in automated
driving.

Reference：

［1］ LIPINSKI D. Wie gut ist genug？—Pegasus Projekt， 2019［EB/
OL］. https：//www. pegasusprojekt. de/files/tmpl/Pegasus-

Abschlussveranstaltung/PEGASUS_Abschlussveranstaltung_
Wie_gut_ist_gut_genug.pdf.

［2］ BAUMANN D， PFEFFER R， SAX E. Automatic generation
of critical test cases for the development of highly automated
driving functions［C］//2021 IEEE 93rd Vehicular Technology
Conference （VTC2021-Spring）. IEEE， 2021： 1-5. DOI：
10.1109/VTC2021-Spring51267.2021.9448686.

［3］ KOWOL K， BRACKE S， GOTTSCHALK H. A-Eye：
Driving with the Eyes of AI for Corner Case Generation［J］.
arXiv preprint arXiv，2202：2022.10803. DOI： 10.48550/
ARXIV.2202.10803.

［4］ ULBRICH S， MENZEL T， RESCHKA A， et al. Defining
and substantiating the terms scene， situation， and scenario for
automated driving ［C］//2015 IEEE 18th international
conference on intelligent transportation systems. IEEE， 2015：
982-988. DOI： 10.1109/ITSC.2015.164.

［5］ PEGASUS. Projekt zur etablierung von generell akzeptierten
gütekriterien， werkzeugen und methoden sowie szenarien und
situationen zur freigabe hochautomatisierter fahrfunktionen［R］.
2019. https：//www. pegasusprojekt. de/files/tmpl/pdf/
PEGASUS_Abschlussbericht_Gesamtprojekt.PDF.

［6］ EBNER A. Referenzszenarien als grundlage für die entwicklung
und bewertung von systemen der aktiven sicherheit［D］. Berlin：
Technischen Universität Berlin， 2014. https：//d-nb. info/
1067387501/34.

［7］ AHMED M， SALEH K， ABOBAKR A， et al. Scenario

Fig. 6　Examples for generated corner cases

126

第 S1 期 Kun GAO，等：基于卷积神经网络感知功能的极端场景生成方法

generation-based training in simulation： pilot study［C］//2019
IEEE International Conference on Systems， Man and
Cybernetics （SMC）. IEEE， 2019： 1239-1244. DOI： 0.1109/
SMC.2019.8913985.

［8］ SONG Q， TAN K， RUNESON P， et al. Critical scenario
identification for realistic testing of autonomous driving systems
［J］. 2022. DOI： 10.21203/rs.3.rs-1280095/v1.

［9］ JADON S. A survey of loss functions for semantic segmentation
［C］//2020 IEEE Conference on Computational Intelligence in
Bioinformatics and Computational Biology （CIBCB）. IEEE，
2020： 1-7. DOI： 10.1109/CIBCB48159.2020.9277638.

［10］ WATKINS C J C H， Dayan P. Q-learning［J］. Machine
Learning， 1992， 8（3）： 279-292. DOI： 10.1007/BF00992698.

［11］ MNIH V， KAVUKCUOGLU K， SILVER D， et al. Playing
atari with deep reinforcement learning［J］. arXiv preprint arXiv，
2013：1312.5602. DOI： 10.48550/arXiv.1312.5602.

［12］ DOSOVITSKIY A， ROS G， CODEVILLA F， et al.
CARLA： An open urban driving simulator［C］//Conference on
robot learning. PMLR， 2017： 1. DOI： 10.48550/
arXiv.1711.03938.

［13］ Kuhn D R， Bryce R， Duan F， et al. Combinatorial testing：
Theory and practice［J］. Advances in Computers， 2015， 99： 1.

127

