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Path-Following Based on Nonlinear
Model Predictive Control with Adaptive
Path Preview

Jun-Ting LI, Chih-Keng CHEN
(Department of Vehicle Engineering, National Taipei University
of Technology, Taipei, China)

Abstract: This paper presents a Nonlinear Model
Predictive Controller (NMPC) for the path following of
autonomous vehicles and an algorithm to adaptively adjust
the preview distance. The prediction model includes
vehicle dynamics, path following dynamics, and system
input dynamics. The single-track vehicle model considers
the vehicle’ s coupled lateral and longitudinal dynamics,
as well as nonlinear tire forces. The tracking error
the

coordinates. The cost function is designed to minimize

dynamics are derived based on curvilinear
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path tracking errors and control effort while considering
constraints such as actuator bounds and tire grip limits.
An algorithm that utilizes the optimal preview distance
vector to query the corresponding reference curvature and
reference speed. The length of the preview path is
adaptively adjusted based on the vehicle speed, heading
error, and path curvature. We validate the controller
performance in a simulation environment with the
autonomous racing scenario. The simulation results show
that the vehicle accurately follows the highly dynamic
path with small tracking errors. The maximum preview
distance can be prior estimated and guidance the selection
of the prediction horizon for NMPC.

Keywords: path following; curvilinear coordinates;

nonlinear model predictive control

1 Introduction

Model predict control can predict the future
behavior of the system, consider the preview
trajectory, and utilize these information to optimize
the the model

prediction path following controller, the information

current control commands. In
of the path ahead from vehicle is required. Path
the path

following performance and several papers have

preview distance significantly affects

1]

investigated this topic. Zhang et al. """ compares the
path-following errors of different predict distances
under double lane change maneuver. Wang et al. '*'
proposes a variable prediction horizon (VPH) , using

a particle swarm optimisation (PSO) algorithm to
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optimise the prediction horizon based based on
comprehensive performance indexes. Xu and Peng”
compares the effects of different predict distances on
the path-following error with MPC and preview
control in both simulations and experiments. The
experimental results demonstrate that the preview
control achieves smoother steering and better ride
comfort compared to the feedback control.

This paper implements vehicle path-following
control with a non-linear model prediction controller.
By considering the nonlinearity of the vehicle
dynamics and path following dy-namics, we can
accurately predict the future vehicle traveling distance
and use the corresponding path curvature and refer-
ence speed as the reference. These approaches can
improve the path following performance of a vehicle
travelling on a path with arbitrary curvature at
different speeds.

2 VEHICLE MODELING

2.1 Nonlinar Single-Track Vehicle Model

The layout of the single-track model is shown in
Fig. 1. To predict the planar vehicle motion about
Oy, we use the angular velocity ¢ (yaw rate) ,
longitudinal velocity V, and lateral velocity V, to

formulate dynamic equations:
(XL Fycos(0)+ Fysin(d)]—LF,

g= I (1a)
V= Z*F‘\,sin(8)+f’7‘;1,cos(()‘)JrF”*F‘,+ v.g (1b)
Vy—ZFMCOS(&)+75'{/'Sm(3)+F’W—|—V_,g?} (10)

where: & is the front wheel steer angle; / is the
wheelbase, /; and /, are the distance from CG to the
front and rear axles; the lumped tire force F;; with the
subscript {x, y% denotes the longitudinal or lateral
direction and {f, r} denotes the front or rear wheel;
drag force Fy=C,V}is the compact aerodynamic
coefficient times velocity squared; m is the vehicle
mass; I, is the moment of inertia.
2.2 Lateral Tire Force

The Simplified Magic Formula® is used to
capture the nonlinear behavior of lateral tire force, the

model is a function of the sideslip angle a, the vertical

Fig.1 Schematic diagram of the single-track vehicle
model. The state variables are in red and the tire
forces are in blue, the arrow indicates the

positive direction of the corresponding variable

force F. of a single wheel, and the road friction
coefficient p:
Fyola,F.,p)=uDsin(Ctan ' (Ba)) (2a)
D=d\F.+d, (2b)
where B, C and D are fitting coefficients. The peak
factor D 1s defined by the first-order function of F..
The lumped sideslip angles at the front and rear axles
are described by :

Vy+[,/92} o _ —1 V\+1,¢
T )— &, a,=tan (7‘/’

Then the combined tire lateral forces F,, and F,, in

) (3)

a,/=tan '(

(4) are available to substitute into single-track
model (1).

F. ,
Fy[:2Fy()(ai, ?y #), ZE{_}(;F} (4)

2.3 Longitudinal Tire Force
The longitudinal forces F,; and F,, are composed
of rear wheel traction force F, and all-wheel braking
force F', as following equations:
Fy=kF, F,=F-+(1—k)F,  (5)
where: £, is the braking coefficient that determines
the force distribution between the front axle and rear
axle, we set k,=F,/(mg) to distribute the braking
force according to the ratio of axle load. The system
inputs are 8, F,, and F,, but the large difference in
magnitude between these variables may increase
numerical instability for an NMPC solver, therefore,
the normalized acceleration at and ab are introduced :
a,=F,/m, a,=F,/m (6)

2.4 Constraints
During racing, we must ensure that the
combined tire force is contained within the friction

ellipse to avoid large tire slip and loss of grip. Thus



160 [l o K 2 2 MCH 9K BE 2% O 5552 4%
the quadratic non-linear constraints are applied : 50=0:
F’+F; = ,
ai i . , + =y 2 ,
(aFY N, e for) (7) Z B e R etT

There are upper bounds and lower bounds on the
system inputs due to physical limits, these bounds are

expressed by inequality constraints as:

é\min < 5 < 8max

Trmax T}max 8
o<qtem Tom o) g ®

Vi Vi

where: T, . 1s the maximum total traction torque of
rear axle; T .. 1S the maximum braking torque of
each axle; r, is the effective rolling radius of wheel.
In order to achieve optimal actuation efficiency, an
equality constraint is imposed ,

a,b,=0 (9)
This equation ensures the traction and braking
commands are orthogonal, i. e., they are not active

at the same time.

3 Path Modeling

The reference path 1s fitted by a cubic spline
function to create a parametric representation. A
curvilinear coordinate system is used to describe the
relationship between the vehicle position and the

reference waypoints (See Fig. 2).

Path Spline o
\  Waypoint .""‘-,-»"'V.“-
\I)o .

o

Fig.2 Single-track vehicle model in a curvilinear
coordinates

3.1 Parametric Path
The discrete path data set [ X, Y] is composed

and Y=

by path coordinates X =[ zo,x1, -+, 2,]

[ Yos Vis % y,,T‘. Then a spline function X (s) with n

equations is used to fit X:

X(s)=a,(s—s, 1) +b,(s—s, )+ c,(s—s,1)
E=1,2,,n, €[5, 1) 5]

s 18 the cumulative arc length starting from

" (10)

where

/e =1,2,+,7
The higher-order derivative of the spline function

with respect to the progressive variable s is easily

obtained by :
Z(s)=3a,(s—s, 1+ 2b,(s—s, )+c, (12)
x2"(s)=6a,(s—s, )+ 20, (13)
E=1,2,,n, sE[s, 1,5

Following the above procedure, y(s), y'(s) and
y" (s) are also derived based on y. The reference

heading angle ¢, and the reference curvature k, are

calculated by :
¢,=arctan 2(y',a") (14)
I/y// o I//y/
K, — TN ( 15)
(I2+y2>3/2

where the arctan2 is the 2-argument arctangent
function.

3.2 Tracking Error for Discrete Path

.
:[Iuytl ’ alld
the closest waypoint to p. is defined as

’ pm
mathtcing point.

The vehicle CG position is p,

“matching

point” Z[x,,,, y,,,T, where m is the index of

Then the tracking error vector in
global coordinate is defined as:

e=p.—p. (16)

In order to obtain the longitudinal error e, and

the lateral error e,, the error vector is projected onto

the curvilinear coordinate by rotation matrix:
cos ¢,

el —sing,
e, sing,,

17
cos ¢, Je 17
where: ¢, is the reference heading angle at p,,, the

arc length error es can be approximated as
longitudinal error e, in general. Under the assumption

that the reference curvature is the same at the

matching point and projection point, then the
reference heading angle is given by :
¢r:¢m+xr e.\ (18)

Consider the vehicle sideslip angle 3 is regulated
in a small value during racing, the course angle can be
approximated to heading angle, then the heading
error 1s defined as:

=¢— ¢, (19)
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3.3 Tracking Error Dynamics
To predict future path tracking error, the
dynamics of the heading error, lateral error, and

vehicle traveling distance are given by :

by=¢— g, =¢—K$ (20a)
é,=V,cose,+ V, sine, (20b)
i V,cose,— V,sine, (20¢)

1—xe,
4 Nonlinear Model Predictive Controller

In this section, the path following problem is

transformed to nonlinear programming (NLP)
problem.
4.1 Control Architecture

The overall control structure of path following is
shown in Fig. 3. The tracking error evaluation
module outputs the path tracking error ¢, and ed
according to the current position of the vehicle. The
preview module looks forward over the preview path
and sends the corresponding reference curvature and
reference speed to the NMPC. The lower controller
distributes the desired acceleration commands a,, a, as
the rear driving torques or four-wheel braking

torques.

.
/
'
1 Track
' Data
'
'
'
! [ Raceline
Generation

'
'
'
'
! X (5). Ye(s) r(s)
'
'
'

Vi o (5).5,(5)

Vehicle
Dynamics

Fig.3 Control architecture of NMPC path-following

4.2 Prediction Model
Consider the vehicle dynamics

(D,

following dynamics (20) , and extended system input

path

dynamics uZ[é", c'z,,d,,T, the prediction model is
formulated as (21). Given a prediction horizon N,,
p:[/c}, e, /c,‘fV/’JT is the parameter trajectory
composed by the reference curvature at each
prediction stage. The first six equations in (21) can
predict future vehicle states, path tracking errors, and
driving distance. In the last three equations we assign

the slew rate of system inputs as extended states,
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_ M. _
[ e 7] Iv
¢ oF :
v, Vg
V}' & — V;-SZ/
. €y "
T=| s = ¢—rs$ =f(x,u,p) (21)
¢ V,cose,+ V. sine,
. V,cose,+ V. sine,
Y )
; V.cose,— V,sine,
a 1—«x,e,
Ldy | q,
L a, i

similar to Ref. [5]. This approach allows to reduce
drastic changes of the inputs to obtain smooth
command signals.
4.3 Discretization

The multi-step Euler method is used to discrete

model in a simple but also precise way :

klzf(fmuk,]))

k71:f'(x;y+/lk”71, uk’p)’ (22)

le:x(,—’—hE/e,

i=1
=f(xpunp), #=0,1,---,N,—1
where h =t,/n is the step size of Euler method, with
the sampling time 7 and the discrete step n. The
model is integrated with smaller steps to increase the
model prediction accuracy. In this study, A=0.02 s
and £=0. 1 s.
4.4 Adaptive Preview Distance
The optimal state vector at the £” prediction step
is denoted by
2i=[Vis Viu § i Cou Con 00 i i (23)
The predicted vehicle traveling distances over
prediction horizon at the current time step are given by
[so 5o STV,J (24)
where the first element s, i1s the current vehicle
traveling distance. To provide the preview vector for
the next time step, we remove s, and add a correction
term that predicts one more step by multiplying
sampling time with last predicted velocity, yielding
preview distance vector,
s/,:[sf sy, Sy z‘,_‘.VjE\J (25)

with this approach, the preview distance can be
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adaptively adjusted based on the predicted vehicle

longitudinal velocity in each prediction step. The
required preview distance can be prior estimated by

s,=5n, TV, — S0 (26)

The preview distance vector is used to query the

corresponding reference curvature and velocity using

linear interpolation,
Vi, =V.(s)

Kk, =k (s,)

(27)
(28)
4.5 Reference Outputs

To stabilize the lateral dynamics, track the
reference velocity, and minimize path tracking error,

the output vector of NMPC is yZ[VJ, V., e‘,}, and

the reference output states at each stage over the

prediction horizon N, are given by

Ve=1,+--,N,,
ref Vf,r( S/J,}g )
a,k
re V‘ Zr (29)
y"f: Vﬂ - 73;/V:k
ref
€k

0
where s,, denotes the kth element in (25). The
reference lateral velocity is derived from the steady-
state kinematic sideslip angle, which can be found in
Ref. [6]as B, =(//1)6,~V,/V..
4.6 Cost Function

Compose tracking and control costs over the
prediction horizon, the cost function J to be

minimized is defined as:
N, 1 ) N,—1 1 ,
JZ;EH Sy (=i |+ ; EH S.'u |, (30)

where S, and S, are square matrices with diagonal
scaling factors. Set these factors to the maximum
acceptable values of the variables for normalisation.
Q is a positive weighting matrix to penalize the
difference between reference states and actual system
states, R penalizes the control effort to obtain the
smooth input trajectory.

Finally we collect cost function, prediction
model, and constraints to formulate path-following

optimization problem:

_mjn J (31a)
s.t.aoo=a(1) (31b)
o =fxpun,p) (31c)

constraints (7), (8), (9) (31d)
where () is the estimated or measured states at the
current time. All the programs are deployed on a
desktop computer with Intel 15-12500 @3.0 GHz
processor, and we show that the problem of each step

can be solved within milliseconds.
5 Simulation Results

5.1 Simulation Results

The optimal reference raceline is generated by
the minimum curvature algorithm and the
corresponding reference speed is generated by the
quasi-steady-state lap time simulation tool all these
programs are open source and available in Ref. [7].
The reference curvature and heading angle of the race
line are obtained by following the process in Section
III-A.
5.2 Vehicle Configuration

The CarSim built-in B-class sports car was used
as the test vehicle in this study, which is a neutral-
steering vehicle. The main vehicle parameters are: m
=1 209 kg; =1 020 kg-m*; /=1.165 m; [=
1.165m; A=0.35m.
5.3 Path tracking performance

Fig. 4

response. Since the lateral tracking error is very small

presents the overall path tracking

we omit the reference path in the plot for clarity. The
path displays the position of the vehicle's CG along
with its longitudinal velocity indicated by a color
gradient. The corresponding values for colors are
displayed in a colorbar located on the right side. The
average longitudinal velocity of the vehicle was 87. 22
km/h, and the lap time was 92. 07 s.

Fig. 5 shows the path tracking errors and primary
vehicle states. The root mean square (RMS) and
maximum lateral error are 0. 430 m and 0. 094 m, the
RMS and maximum heading error are 1.09° and
1.92". The velocity profile shows that the vehicle
decelerated properly before the apex, accelerated
during the exit, and maintained high speeds on
straight lines. During the turn, the yaw rate was used
to track the curvature profile thus they have similar

trends. The vehicle’ s sideslip angle is kept below 2°
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Fig.4 Path tracking result in Cartesian coordinates

during racing, which means that the vehicle maintains
excellent lateral stability in the high-speed turns.

Fig. 6 shows the maximum preview distance
during racing. With the preview distance vector that
takes into account the path following dynamics, the
length of preview path can be adaptively adjusted
based on the vehicle speed, heading error, and path
curvature. This approach allows us to evaluate the
As the
prediction time of the NMPC gets longer, the

required preview distance in advance.

preview distance will increase. We need to consider
the practical application conditions (e. g. , limitations
of sensing technology, visibility of the path ahead) to

set a prediction time with feasible preview distance.

6 Conclusions

This paper presents a NMPC for the path
following of autonomous vehicles and an algorithm to
adaptively adjust the preview distance. The proposed
controller scheme coordinates the vehicle’ s lateral
and longitudinal dynamics to follow the racing line at
high speed. By combining path dynamics and vehicle
dynamics to build a prediction model for NMPC,

path following performance and driving stability are

1
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1 1 1
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1 itudinal Velocity
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Fig.6 Maximum preview distance

significantly improved. The simulation results show
that the vehicle accurately follows the highly dynamic

path with small tracking errors.
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