Adaptive Reduction Algorithm of Scattered Point Clouds Based on Wavelet Technology
CSTR:
Author:
Affiliation:

Clc Number:

P234.4

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    An adaptive reduction algorithm of scattered point clouds based on wavelet is proposed, in which the 3D point clouds are converted into point sets on the 2D plane firstly by using the slicing technology in rapid prototyping theory, and then the wavelet coefficients of sorted point clouds data after the wavelet transform can be obtained whose peaks represent the points to be reserved. According to the experiments, the rapid and high quality reduction of scattered point can be performed while the slice thickness is chosen as 2 or 3 times of the sampling interval. The result indicates that this algorithm has obvious advantages in terms of the feature preserving. It can preserve the feature information ultimately, thus the reduction results are more ideal. Due to peaks of wavelet coefficient can adaptively identify the objects’ details and features, this algorithm needlessly set a threshold, which explains the adaptability of the algorithm and also contributes to realizing the automatic reduction.

    Reference
    Related
    Cited by
Get Citation

XU Gong, CHENG Xiaojun. Adaptive Reduction Algorithm of Scattered Point Clouds Based on Wavelet Technology[J].同济大学学报(自然科学版),2013,41(11):1738~1743

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:March 25,2013
  • Revised:July 15,2013
  • Adopted:June 30,2013
  • Online: October 28,2013
  • Published:
Article QR Code