Pedestrian Tracking in Infrared Video Based on Improved Particle Filter
CSTR:
Author:
Clc Number:

TP391

  • Article
  • | |
  • Metrics
  • |
  • Reference [14]
  • |
  • Related
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    An improved particle filter method for pedestrian tracking in infrared video is proposed. The objects are described in the scheme of particle filter using Histogram of Oriented Gradients(HOG). Instead of the Euclidean distance in color space, the HOG is employed to describe the similarity and compute the weights of the samples, which solves the issue of lack of color information for infrared video. Experimental results show that the method is more accurate and effective tracking of moving targets in complex scenes than traditional particle filter algorithm in infrared video.

    Reference
    [1]Collins R.T., Lipton A.J. and Kanade T., Introduction to the special section on video surveillance [J] . IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8): 745 - 746.
    [2]Wang L., Hu W., Tan T., Recent developments in human motion analysis [J] . Pattern Recognition, 2003, 36 (3): 585 - 601.
    [3]Hilton A. and Fua P., Modeling people toward vision- based understanding of a person’s shape, appearance, and movement [J] . Computer Vision and Image Understanding, 2001, 81 (3): 227 - 230.
    [4]王亮,胡卫明,谭铁牛.人运动的视觉分析综述[J].计算机学报,2002, 25(3): 225-237.
    [5]杨臬,张桂林.一种新的相关跟踪算法的设计与实现[J].红外与毫米波学报,2000,19(5): 377-380.
    [6]Brox T., Bregler C. and Malik J., Large displacement optical flow[C] // Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2009. IEEE, 2009: 41 - 48.
    [7]Dai H., Chen M., Zhou S., Li J., Peng X., Study of support vector machine based adaptive Kalman filtering [J]. Control and Decision, 2008, 23 (8): 949 - 952.
    [8]Nummiaro K., Koller E. and Van G. L. Object tracking with an adaptive color-based particle filter [M] //Pattern Recognition. Springer Berlin Heidelberg, 2002: 353 - 360.
    [9]程建,周越,蔡念,杨杰.基于粒子滤波的红外目标跟踪[J] .红外与毫米波学报,2006, 25(2): 113 - 117.
    [10]胡士强,敬忠良.粒子滤波算法综述[J] .控制与决策,2005,20(4): 361 – 365,371.
    [11]张宝亮,杨柳,张亮.基于粒子滤波的红外目标跟踪新算法[J] .电子科技,2007,(11): 22 - 25,34.
    [12]Dalal N. and Triggs B., Histograms of oriented gradients for human detection[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2005: 886 - 893.
    [13]孟勃,朱明.粒子滤波算法在非线性目标跟踪系统中的应用[J] .光学精密工程,2007,15(9): 1421 - 1426.
    [14]刘国成,王永骥.一种基于改进粒子滤波的多目标跟踪算法[J].控制与决策,2009,24(2): 317 - 320.
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

ZHANG Shaoming, HU Jianping, SHI Yang. Pedestrian Tracking in Infrared Video Based on Improved Particle Filter[J].同济大学学报(自然科学版),2015,43(12):1883~1887

Copy
Share
Article Metrics
  • Abstract:1302
  • PDF: 1059
  • HTML: 37
  • Cited by: 0
History
  • Received:June 05,2014
  • Revised:November 09,2015
  • Adopted:October 12,2015
  • Online: December 28,2015
Article QR Code