Lithium ion Power Battery Internal Resistance Model and Its Experiment Study
CSTR:
Author:
Clc Number:

TP1

  • Article
  • | |
  • Metrics
  • |
  • Reference [27]
  • |
  • Related [20]
  • |
  • Cited by [0]
  • | |
  • Comments
    Abstract:

    According to the porous electrode theory, a simulation model of lithium ion power batteries is established. The preliminary analysis of the model indicates that the internal factors which affect the battery internal resistance is the solid phase diffusion coefficient of the electrodes and electronic conductivity, ion conductivity and electrodes conductivity of the battery. The Galvanostatic Intermittent Titration Technique (GITT) is applied to a lithium iron phosphate half cell and a graphite half cell for solid phase diffusion coefficient measurement. The Electrochemical Impedance Spectroscopy(EIS) is applied to a lithium iron phosphate half cell and a graphite half cell for electrical conductivity measurement. The polarization resistance of the battery depends on the lithium ion diffusion coefficient in the anode materials. And the ohmic resistance of the battery depends on the electrical conductivity of the battery.

    Reference
    [1] 魏学哲, 徐玮, 沈丹. 锂离子电池内阻辨识及其在寿命估计中的应用[J]. 电源技术, 2009,33(03):217-220.
    [2] 郭宏榆, 姜久春, 王吉松, 等. 功率型锂离子动力电池的内阻特性[J]. 北京交通大学学报, 2011,35(05):119-123.
    [3] 徐晓东, 刘洪文, 杨权. 锂离子电池内阻测试方法研究[J]. 中国测试, 2010,36(06):24-26.
    [4] 王宏志, 武俊峰. 基于LabVIEW的锂离子动力电池内阻测试系统[J]. 自动化技术与应用, 2009,28(04):80-82.
    [5] Churikov A V, Volgin M A, Pridatko K I. On the determination of kinetic characteristics of lithium intercalation into carbon[J]. Electrochimica Acta, 2002,47(17):2857-2865.
    [6] Dao T, Vyasarayani C P, McPhee J. Simplification and order reduction of lithium-ion battery model based on porous-electrode theory[J]. Journal of Power Sources, 2012,198:329-337.
    [7] Martínez-Rosas E, Vasquez-Medrano R, Flores-Tlacuahuac A. Modeling and simulation of lithium-ion batteries[J]. Computers Chemical Engineering, 2011,35(9):1937-1948.
    [8] 王晓文, 陈俊彩, 王辛龙, 等. AN、DME对锂电池电解液电导率的影响[J]. 电池工业, 2011,16(06).
    [9] 周骏, 李琪, 乔庆东. 提高锂离子电池正极材料LiFePO4电导率的方法[J]. 化工科技, 2011,19(02):55-58.
    [10] Rissouli K, Benkhouja K, Ramos-Barrado J R, et al. Electrical conductivity in lithium orthophosphates[J]. Materials Science and Engineering: B, 2003,98(3):185-189.
    [11] Renganathan S, White R E. Semianalytical method of solution for solid phase diffusion in lithium ion battery electrodes: Variable diffusion coefficient[J]. Journal of Power Sources, 2011,196(1):442-448.
    [12] Andriiko A A, Rudenok P V, Nyrkova L I. Diffusion coefficient of Li in solid-state rechargeable battery materials[J]. Journal of Power Sources, 1998,72(2):146-149.
    [13] 熊利芝, 梁凯, 何则强. 锂离子在LiVOPO4中的扩散系数的测定[J]. 吉首大学学报(自然科学版), 2011,32(01):85-87.
    [14] Bohnke C, Bohnke O, Fourquet. Electrochemical intercalation of lithium into LiLaNb2O7 perovskite [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1997,144(4):1151-1158.
    [15] Umedaa M, Dokkoa K, Fujitaa Y, et al. Electrochemical impedance study of Li-ion insertion into mesocarbon microbead single particle electrode: Part I. Graphitized carbon[J]. Electrochimica Acta, 2001,47(6):885-890.
    [16] 王连亮, 马培华, 张琨, 等. 库仑法和电化学阻抗法测量LiFePO4锂离子扩散系数[J]. 盐湖研究, 2009,17(03):53-55.
    [17] 粟智, 叶世海, 王永龙. 锂离子电池正极材料LiMnO2的电化学阻抗谱研究[J]. 化学通报, 2009(11).
    [18] Shaju K M, Rao G V S, Chowdari B V R. EIS and GITT studies on oxide cathodes, O2-Li(2/3) x(Co0.15Mn0.85)O2 (x=0 and 1/3)[J]. Electrochimica Acta, 2003,48(18):2691-2703.
    [19] Tang X, Pan C, He L, et al. A novel technique based on the ratio of potentio-charge capacity to galvano-charge capacity (RPG) for determination of the diffusion coefficient of intercalary species within insertion-host materials: theories and experiments[J]. Electrochimica Acta, 2004,49(19):3113-3119.
    [20] Deiss E. Spurious potential dependence of diffusion coefficients in Li insertion electrodes measured with PITT[J]. Electrochimica Acta, 2002,47(25):4027-4034.
    [21] Liu P, Wu H. Diffusion of lithium in carbon[J]. Solid State Ionics, 1996,92(1-2):91-97.
    [22] ZHENG W, SHUI M, SHU J, et al. GITT studies on oxide cathode LiNi1/3Co1/3Mn1/3O2 synthesized by citric acid assisted high-energy ball milling[J]. Bulletin of Materials Science, 2013,36(3):495-498.
    [23] Deiss E. Spurious chemical diffusion coefficients of Li in electrode materials evaluated with GITT[J]. Electrochimica Acta, 2005,50(14):2927-2932.
    [24] Dees D W, Kawauchi S, Abraham D P, et al. Analysis of the Galvanostatic Intermittent Titration Technique (GITT) as applied to a lithium-ion porous electrode[J]. Journal of Power Sources, 2009,189(1):263-268.
    [25] Kun Tang X Y J S. Kinetic analysis on LiFePO4 thin films by CV, GITT, and EIS[J]. Electrochimica Acta, 2011,56(13):4869-4875.
    [26] 粟智, 翁之望. 交流阻抗法测定锂离子电池正极材料的导电率[J]. 计算机与应用化学, 2011,28(5):623-624.
    [27] 庄全超, 刘文元, 武山. 锂离子电池有机电解液电导率的影响因素[J]. 电池工业, 2005,10(5):302-304.
    Comments
    Comments
    分享到微博
    Submit
Get Citation

WEI Xuezhe, YANG Jing, LIU Yaofeng, ZHU Jiangong. Lithium ion Power Battery Internal Resistance Model and Its Experiment Study[J].同济大学学报(自然科学版),2015,43(10):1542~1549

Copy
Share
Article Metrics
  • Abstract:3722
  • PDF: 1865
  • HTML: 47
  • Cited by: 0
History
  • Received:July 13,2014
  • Revised:May 19,2015
  • Adopted:September 14,2015
  • Online: October 26,2015
Article QR Code