Structural Topology Optimization Theory and Its Application in Form Finding of Bridges
CSTR:
Author:
Clc Number:

U442.5

  • Article
  • | |
  • Metrics
  • |
  • Reference [31]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    First, the physical model, the mathematic model and the algorithm of structural topology optimization was stated. Next, the application of topology optimization in form finding of bridges is elaborated via some examples, and the evolution process and the final layout of structural topology optimization were presented. Finally, some issues of future research were suggested to improve the application of topology optimization in form finding of bridges. The result shows that structural topology optimization can derive a reasonable and heuristic layout in the conceptual design phase, and has a promising prospect in form finding of bridges.

    Reference
    [1] Deiman E, Plat H T. Cost information in succeeding stages of the design process[J]. Advanced Technologies, MR Beheshti and K. Zreik (Ed.) BV: Elsevier Science Publishers. 1993, 327.
    [2] Thomas H, Zhou M, Schramm U. Issues of commercial optimization software development[J]. Structural and Multidisciplinary Optimization. 2002, 23(2): 97-110.
    [3] Bends?e M P, Kikuchi N. Generating optimal topologies in structural design using a homogenization method[J]. Computer methods in applied mechanics and engineering. 1988, 71(2): 197-224.
    [4] Bends?e M P. Optimal shape design as a material distribution problem[J]. Structural and multidisciplinary optimization. 1989, 1(4): 193-202.
    [5] Bends?e M P, Sigmund O. Material interpolation schemes in topology optimization[J]. Archive of Applied Mechanics. 1999, 69(9-10): 635-654.
    [6] Mattheck C, Burkhardt S. A new method of structural shape optimization based on biological growth[J]. International Journal of Fatigue. 1990, 12(3): 185-190.
    [7] Xie Y M, Steven G P. A simple evolutionary procedure for structural optimization[J]. Computers & structures. 1993, 49(5): 885-896.
    [8] Querin O M, Steven G P, Xie Y M. Evolutionary structural optimisation (ESO) using a bidirectional algorithm[J]. Engineering Computations. 1998, 15(8): 1031-1048.
    [9] Huang X, Xie Y. Evolutionary topology optimization of continuum structures: methods and applications[M]. John Wiley & Sons, 2010.
    [10] Zuo Z H, Xie Y M, Huang X. Combining genetic algorithms with BESO for topology optimization[J]. Structural and Multidisciplinary Optimization. 2009, 38(5): 511-523.
    [11] Fourie P, Groenwold A. The particle swarm optimization in topology optimization[Z]. Dalian, China: 2001.
    [12] Luh G, Lin C. Structural topology optimization using ant colony optimization algorithm[J]. Applied Soft Computing. 2009, 9(4): 1343-1353.
    [13] Osher S, Sethian J A. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations[J]. Journal of computational physics. 1988, 79(1): 12-49.
    [14] Sethian J A, Wiegmann A. Structural boundary design via level set and immersed interface methods[J]. Journal of computational physics. 2000, 163(2): 489-528.
    [15] Bends?e M P, Sigmund O. Topology optimization: theory, methods, and applications[M]. Berlin: Springer Verlag, 2003.
    [16] Chang C, Chen A. Gradient projection method for structural topology optimization including density-dependent force[J]. Structural and Multidisciplinary Optimization. 2014.
    [17] Wasiutynski Z. On the congruency of the forming according to the minimum potential energy with that according to equal strength[J]. Bull. de l’Academie Polonaise des Sciences, Serie des Sciences Techniques. 1960, 8(6): 259-268.
    [18] Svanberg K. The method of moving asymptotes—a new method for structural optimization[J]. International journal for Numerical Methods in Engineering. 1987, 24(2): 359-373.
    [19] Fleury C. CONLIN: an efficient dual optimizer based on convex approximation concepts[J]. Structural and multidisciplinary optimization. 1989, 1(2): 81-89.
    [20] Rosen J B. The gradient projection method for nonlinear programming. Part II. Nonlinear constraints[J]. J Soc Ind Appl Math. 1961, 9(4): 514-532.
    [21] Rosen J B. The gradient projection method for nonlinear programming. Part I. Linear constraints[J]. J Soc Ind Appl Math. 1960, 8(1): 181-217.
    [22] Chang C, Borgart A, Chen A, et al. Direct gradient projection method with transformation of variables technique for structural topology optimization[J]. Structural and Multidisciplinary Optimization. 2014, 49(1): 107-119.
    [23] 荣见华,姜节胜,颜东煌等. 多约束的桥梁结构拓扑优化[J]. 工程力学. 2002, 19(04): 160-165.J Rong, J Jiang, D Yan, et al. Bridge structure topology optimization with multiple constraints[J]. Engineering Mechanics. 2002, 19(04): 160-165.
    [24] 左孔天. 连续体结构拓扑优化理论与应用研究[D]. 武汉: 华中科技大学, 2004.K Zuo. Research of Theory and Application about Topology Optimization of Continuum Structure[D]. Wuhan: Huazhong University of Science and Technology, 2004.
    [25] 陈艾荣,盛勇,钱锋. 桥梁造型[M]. 北京: 人民交通出版社, 2005.A Chen, Y Sheng, F Qian. Form of Bridges[M]. China Communications Press: China Communications Press, 2005
    [26] 陈艾荣,常成. 渐进结构优化法在桥梁找型中的应用[J]. 同济大学学报(自然科学版). 2012, 40(01): 8-13.A Chen, C Chang. Evolutionary Structural Optimization in Form Finding of Bridges[J]. Journal of Tongji University(Natural Science). 2012, 40(01): 8-13.
    [27] Schnubel A. Organic Pedestrian Bridges, RFR Paris. www.schnubel.com/en/bridges/Organic-Footbridge.
    [28] Briseghella B, Fenu L, Lan C, et al. Application of Topological Optimization to Bridge Design[J]. Journal of Bridge Engineering. 2012, 18(8): 790-800.
    [29] 常成. 基于梯度的结构拓扑优化及桥梁找型[D]. 上海: 同济大学, 2014.C Chang. Gradient-based structural topology optimization and applications in form finding of bridges[D]. Shanghai: Tongji University, 2014.
    [30] Yan C, Hao L, Hussein A, et al. Evaluations of cellular lattice structures manufactured using selective laser melting[J]. International Journal of Machine Tools and Manufacture. 2012, 62: 32-38.
    [31] Tang J. Developing evolutionary structural optimization techniques for civil engineering applications[J]. 2011.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

CHEN Airong, CHANG Cheng, MA Rujin, REN Lisha. Structural Topology Optimization Theory and Its Application in Form Finding of Bridges[J].同济大学学报(自然科学版),2016,44(5):0657~0663

Copy
Share
Article Metrics
  • Abstract:2616
  • PDF: 2513
  • HTML: 29
  • Cited by: 0
History
  • Received:May 24,2015
  • Revised:March 12,2016
  • Adopted:March 02,2016
  • Online: June 03,2016
Article QR Code