Characterization and Diffusion in Reconstructed Gas Diffusion Layer Based on Stochastic Method
CSTR:
Author:
Clc Number:

TM911.4;O647.33

  • Article
  • | |
  • Metrics
  • |
  • Reference [22]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    This paper aims to build a 3D micro structure of carbon paper gas diffusion layer (GDL) based on morphological parameter of true materials. This method needs to acquire the basic morphological parameter first by scanning the true GDL structure. Then, by confirming the center coordinates of the whole 3D GDL structure, it constructs a layer of fiber structure each time through the loop and stops when reaching the true thickness. The fiber in each layer will be overlapping and intersecting. After finishing the reconstruction, it needs to be transferred to the binary image that is convenient to fluid modeling. This structure model is used to test the permeability, and the results obtained from the stochastic reconstruct method is very close to the results of the true image. From the case study, the permeability characteristic effect with the change of each structure parameter is given. These results will be used for the structure optimization and improvement of the diffusion of GDL structure.

    Reference
    [1] 徐腊梅. 质子交换膜燃料电池模拟与优化[M]. 北京: 国防工业出版社, 2012.
    [2] 王晓丽,张华民,张建鲁,等. 质子交换膜燃料电池气体扩散层的研究进展[J]. 化学进展. 2006(04): 507-513.
    [3] Weber A Z, Borup R L, Darling R M, et al. A Critical Review of Modeling Transport Phenomena in Polymer-Electrolyte Fuel Cells[J]. Journal of The Electrochemical Society. 2014, 12(161): F1254-F1299.
    [4] Adler P M, Thovert J F, Bekri S, et al. Real porous media: local geometry and transports[Z]. Grenoble(FR): 200213.
    [5] Liang Z R, Fernandes C P, Magnani F S, et al. A reconstruction technique for three-dimensional porous media using image analysis and Fourier transforms[J]. Journal of Petroleum Science and Engineering. 1998, 21(3): 273-283.
    [6] Schladitz K, Peters S, Reinel-Bitzer D, et al. Design of acoustic trim based on geometric modeling and flow simulation for non-woven[J]. Computational Materials Science. 2006, 38(1): 56-66.
    [7] Schulz V P, Becker J, Wiegmann A, et al. Modeling of Two-Phase Behavior in the Gas Diffusion Medium of PEFCs via Full Morphology Approach[J]. Journal of The Electrochemical Society. 2007, 154(4): B419.
    [8] Zamel N, Li X, Shen J, et al. Estimating effective thermal conductivity in carbon paper diffusion media[J]. Chemical Engineering Science. 2010, 65(13): 3994-4006.
    [9] Zamel N, Li X, Becker J, et al. Effect of liquid water on transport properties of the gas diffusion layer of polymer electrolyte membrane fuel cells[J]. International Journal of Hydrogen Energy. 2011, 36(9): 5466-5478.
    [10] Daino M M, Kandlikar S G. 3D phase-differentiated GDL microstructure generation with binder and PTFE distributions[J]. International Journal of Hydrogen Energy. 2012, 37(6): 5180-5189.
    [11] Wang Y, Cho S, Thiedmann R, et al. Stochastic modeling and direct simulation of the diffusion media for polymer electrolyte fuel cells[J]. International Journal of Heat and Mass Transfer. 2010, 53(5-6): 1128-1138.
    [12] Froning D, Brinkmann J, Reimer U, et al. 3D analysis, modeling and simulation of transport processes in compressed fibrous microstructures, using the Lattice Boltzmann method[J]. Electrochimica Acta. 2013, 110: 325-334.
    [13] Thiedmann R, Hartnig C, Manke I, et al. Local Structural Characteristics of Pore Space in GDLs of PEM Fuel Cells Based on Geometric 3D Graphs[J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY. 2009, 156(11): B1339-B1347.
    [14] Thiedmann R, Fleischer F, Hartnig C, et al. Stochastic 3D modeling of the GDL structure in PEMFCs based on thin section detection[J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY. 2008, 155(4): B391-B399.
    [15] Gostick J T. Random pore network modeling of GDLs using Voronoi and Delaunay Tessellations[J]. ECS Transactions. 2011, 1(41): 125-130.
    [16] Thompson K E. Pore-Scale Modeling of Fluid Transport in Disordered Fibrous Materials[J]. AIChE Journal. 2002, 7(48): 1369-1389.
    [17] Ji Y, Luo G, Wang C. Pore-Level Liquid Water Transport Through Composite Diffusion Media of PEMFC[J]. Journal of The Electrochemical Society. 2010, 157(12): B1753.
    [18] Becker J, Flückiger R, Reum M, et al. Determination of Material Properties of Gas Diffusion Layers: Experiments and Simulations Using Phase Contrast Tomographic Microscopy[J]. Journal of The Electrochemical Society. 2009, 10(156): B1175-B1181.
    [19] Hao L, Cheng P. Lattice Boltzmann simulations of anisotropic permeabilities in carbon paper gas diffusion layers[J]. Journal of Power Sources. 2009, 186(1): 104-114.
    [20] Feser J P, Prasad A K, Advani S G. Experimental characterization of in-plane permeability of gas diffusion layersS[J]. Journal of Power Sources. 2006, 162(2): 1226-1231.
    [21] Tomadakis M M, Robertson T J. Viscous Permeability of Random Fiber Structures: Comparison of Electrical and Diffusional Estimates with Experimental and Analytical Results[J]. Journal of Composite Materials. 2005, 39(2): 163-188.
    [22] Johnson D L, Koplik J, Schwartz L M. New Pore-Size Parameter Characterizing Transport in Porous Media[J]. Physical Review Letters. 1986, 57(20): 2564-2567.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

GAO Yuan, WU Xiaoyan, SUN Yanbo. Characterization and Diffusion in Reconstructed Gas Diffusion Layer Based on Stochastic Method[J].同济大学学报(自然科学版),2017,45(01):109~118

Copy
Share
Article Metrics
  • Abstract:1717
  • PDF: 1342
  • HTML: 27
  • Cited by: 0
History
  • Received:August 26,2015
  • Revised:October 26,2016
  • Adopted:October 09,2016
  • Online: February 10,2017
Article QR Code