Traffic State Estimation based on Low Frequency Detection Data at Signalized Intersections
CSTR:
Clc Number:

U491.1

  • Article
  • | |
  • Metrics
  • |
  • Reference [31]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    A traffic state identification method for intersections is proposed based on detection data with a low frequency from detection on the mid of the urban roads which is applied for urban interrupted flow in medium and small cities of our country. At first, the relationship between occupation, volume and traffic state is analyzed under different parameters of circumstances based on simulation data and a method of curve fitting is proposed to build the boundaries of different traffic state. Then the functional relationship of coefficients of boundaries functions with environment variables is fit out which is later applied to general ones. The methods above is verified by simulation data with the identification rate of over 80%, and empirical data with the identification rate of over 75% , with severe mistake rates less than 2.1%.

    Reference
    [1] 唐克双,孙剑. 基于多源数据融合的城市道路交通控制与管理[M]. 上海:同济大学出版社.2015.
    Tang K, Sun J. Urban traffic control and management based on fusion of multi-source data [M]. Shanghai: Tongji Universtiy Press. 2015.
    [2] Hoogendoorn S, Hoogendoorn–Lanser S, Schuurman H. Fuzzy perspectives in traffic engineering [R]. Research Report, TRAIL Research School, Dutch Ministry of Transport, 1998.
    [3] Hawas Y E. A fuzzy-based system for incident detection in urban street networks [J]. Transportation Research Part C: Emerging Technologies, 2007, 15(2): 69-95.
    [4] Levin, M. Krause G M. Incident detection: A bayesian approach[M]. Washington, D.C.: Transportation Research Record, 1978: 52-58.
    [5] 姜桂艳.道路交通状态判别技术与应用[M].北京:人民交通出版社.2004.
    Jiang G. Road traffic state identification technology and application [M].Beijing: China Communications Press.2004.
    [6] Persaud B N, Hall F L, Hall L M. Congestion identification aspects of the McMaster incident detection algorithm[J]. Transportation Research Record, 1990, 1287.
    [7] 韩悦臻.城市道路交通状态指标体系及判定方法研究[D]. 吉林:吉林大学, 2003.
    Han Y. Evaluation indexes and estimation for urban traffic conditions [D]. Jinlin Province: Jinlin University, 2013.
    [8] Thom R. Structural stability and morphogenesis [M]. Boulder: Westview Press, 1989.
    [9] Kerner B S, Demir C, Herrtwich R G, et al. Traffic state detection with floating car data in road networks[C]//Intelligent Transportation Systems, 2005: 44-49.
    [10] 徐建闽,邹亮. 浮动车与感应线圈检测技术融合模型[C]. 第二十四届中国控制会议论文集(下册).中国自动化学会控制理论专业委员会, 2005:04.
    Xu J, Zhou L. Fusion model from probe vehicle and loop detector [C]. Twenty-fourth Chinese Control Conference (Volume II). Chinese Association of Automation Control Theory Professional Committee, 2005:04.
    [11] 邹亮,徐建闽,朱玲湘. 基于融合技术的道路交通状态估计模型[J]. 清华大学学报(自然科学版), 2007(2):1822-1825.
    Zhou L, Xu J, Zhu L. Estimation model of road traffic state based on fusion technology [J]. Tsinghua University Journal(Natural Science), 2007(2):1822-1825.
    [12] 张存保, 严新平. 固定检测器和移动检测器的交通信息融合方法[J]. 交通与计算机, 2007, 25(3): 14-17.
    Zhang C, Yan X. Fusion method of traffic information of fixed detectors and mobile detectors [J]. Computer and Communications, 2007, 25 (3): 14-17.
    [13] 王春娥. 基于数据融合的城市道路交通状态估计算法研究[D]. 吉林:吉林大学, 2008.
    Wang C. Estimation algorithm based on data fusion of urban road traffic state [D]. Jinlin Province: Jinlin University, 2008.
    [14] 皮晓亮, 王正, 韩皓, 等. 基于环形线圈检测器采集信息的交通状态分类方法应用研究 [J]. 公路交通科技, 2006, 23(4): 115-119.
    Pi X, Wang Z, Han H, et al. Application research of traffic state classification method based on collected
    information from loop detector [J]. Highway and Transportation Research, 2006, 23 (4): 115-119.
    [15] 姜桂艳,郭海锋,吴超腾. 基于感应线圈数据的城市道路交通状态判别方法 [J]. 吉林大学学报(工学版),2008(1):37-42.
    Jiang G, Guo H, Wu C. Identification method of urban road traffic state based on inductive coil data. Jilin University Journal(Engineering Science), 2008 (1): 37-42.
    [16] Liu H, Ma W, Wu X, et al. Real-time estimation of arterial travel time under congested conditions [J]. Transportmetrica, 2009, 8(2):87-104.
    [17] Thomas K, Dia H, Cottman N. Simulation of arterial incident detection using neural networks[C]//8th World Congress on Intelligent Transport Systems. 2011.
    [18] 曲昭伟,魏强,别一鸣,等. 基于固定检测器的区域交通状态估计方法[J]. 中南大学学报(自然科学版),2013(1):403-410.
    Qu Z, Wei Q, Bie Y, et al. Method for traffic state identification based on fixed detector [J]. Central South University Journal(Natural Science), 2013 (1): 403-410.
    [19] 公安部. 城市道路交通管理评价指标体系 [S].2012.
    Ministry of Public Security. Urban Road Traffic Management Evaluation System [S] .2012.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

. Traffic State Estimation based on Low Frequency Detection Data at Signalized Intersections[J].同济大学学报(自然科学版),2017,45(05):0705~0713

Copy
Share
Article Metrics
  • Abstract:2763
  • PDF: 1316
  • HTML: 680
  • Cited by: 0
History
  • Received:July 02,2016
  • Revised:March 24,2017
  • Adopted:February 13,2017
  • Online: July 20,2017
Article QR Code