Evaluation on Energy Equivalent Ductility Index Based on Optimized Algorithm
CSTR:
Author:
Clc Number:

P315.9

  • Article
  • | |
  • Metrics
  • |
  • Reference [27]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    back propagation(BP), radial basis function(RBF) and genetic algorithmback propagation (GABP) are used to train and predict the ultimate ductility index μΔeof dualenergy equivalent method. Five control parameters and PEER database and quasistatic test are used as training and prediction samples. BP and optimization algorithm of its node numbers in hidden layer and learning rate are compiled, RBF and optimization algorithm of its node numbers and central width are compiled. Genetic algorithm (GA) is used for optimizing weight wij and threshold θj in backpropagation (BP) to inhibit the local optimum, making relationship between testing data approximate to the real mapping principle. Algorithms is realized to predict μΔe of fullscale columns. Research indicates GABP has optimal adaptability and computing superiority, provide new method for structural damage evaluation.

    Reference
    [1] FEMA. Next-generation performance-based seismic design guidelines(FEMA445)[R]. Washington D.C.: Department of Homeland Security(DHS), 2016.
    [2] Xe K, Tzig W B, Petryna Y S. Quasistatic seismic damage indicators for RC structures from dissipating energies in tangential subspaces[J]. Mathematical Problems in Engineering. 2014, 2014: 1-11.
    [3] FEMA. Prestandard and commentary for the seismic rehabilitation of buildings[S]. Washington D.C., 2000.
    [4] Taylor A W, Kuo C, Wellenius K, et al. A summary of cyclic lateral load tests on rectangular reinforced concrete columns[R]. Gaithesburg,USA: Building and Fire Research Laboratory,National Institute of Standards and Technology, 1997.
    [5] Taylor A W, Stone W C. A summary of cyclic lateral load tests on spiral reinforced concrete columns[R]. Gaithersburg,USA: Building and Fire Research Laboratory, National Institute of Standards and Technology, 1993.
    [6] Lin H, Tang S, Lan C. Damage analysis and evaluation of high strength concrete frame based on deformation-energy damage model[J]. Mathematical Problems in Engineering. 2015, 2015(1): 1-14.
    [7] Lin H, Tang S, Lan C. Control parametric analysis on improving Park restoring force model and damage evaluation of high-strength structure[J]. Advances in Materials Science and Engineering. 2016, 2016(1): 1-11.
    [8] Hopfield J J. Neural networks and physical systems with emergent collective computational abilities[J]. Proceedings of the National Academy of Sciences(PNAS). 1988, 79(4): 2554-2558.
    [9] Haykin S O. Neural Networks and Learning Machines(Third Edition)[M]. Canada: Prentice Hall, 2015: 936.
    [10] Fredric M H, Ivica K. Principles of Neurocomputer for Science and Engineering[M]. New York: McGraw-Hill Computer Inc, 2007: 490.
    [11] Rumelhart D E, Hinton G E, Williams R J. Learning representations by back-propagating errors[J]. Nature. 1986, 323(10): 533-536.
    [12] Lecun Y. Une procedure d'apprentissage pour reseau a seuil assymetrique[J]. A la Frontiere de l'Intelligence Artificielle des Sciences de la Connaissance des Neurosciences. 1985, 85(1): 599-604.
    [13] Rumelhart D, Mcclelland J. Learning Internal Representations by Error Propagation[M]. Massachusetts: MIT Press, 2016: 318-362.
    [14] M. T. Hagan, Demuth H B, Beals M. Neural Network Design[M]. Boston: PWS Publishing Company, 1996.
    [15] Hunter A. Feature selection using probabilistic neural networks[J]. Neural Computing and Applications. 2000, 2(9): 124-132.
    [16] Saatcioglu M, Grira M. Confinement of reinforced concrete colummns with welded reinforcement grids[J]. ACI Structural Journal. 1999, 96(1): 29-39.
    [17] Matamoros A B. Study of drift limits for high-strength concrete columns[D]. Illinois: Universtiy of Illinois at Urbana-Champaign, 2000.
    [18] Légeron F, Paultre P. Behavior of high-strength concrete columns under cyclic flexure and constant axial load[J]. ACI Structural Journal. 2000, 97(4): 591-601.
    [19] Paultre P, Légeron F, Mongeau D. Influence of concrete strength and transverse reinforcement yield strength on behavior of high strength concrete columns[J]. ACI Structural Journal. 2001, 98(4): 490-501.
    [20] Powell M J D. Radial basis funcition for multivariable interpolation:A review[C]. Shrivenham UK: 1985.
    [21] Broomhead D S, Lowe D. Multivariable functional interpolation and adaptive networks[J]. Complex Systems. 1988, 3(2): 321-355.
    [22] Jackson S J, Stevens D, Giddings D, et al. An adaptive RBF finite collocation approach to track transport processes across moving fronts[J]. Computers amp; Mathematics with Applications. 2016, 71(1): 278-300.
    [23] Chen S, Billings S A, Cowan C F N, et al. Practical identification of NARMAX models using radial basis functions[J]. International Journal of Control. 1990, 52(6): 1327-1350.
    [24] Webb A R, Shannon S. Shape-adaptive radial basis functions[J]. IEEE Trans. Neural Networks. 1998, 9(6): 1155-1166.
    [25] Broomhead D S, Lowe D. Multivariable fucntional interpolation and adaptive networks[J]. Complex Systems. 1988, 2(3): 321-355.
    [26] Holland J H. Building blocks,cohort Genetic Algorithms and hyperplane-defined functions[J]. Evolutionary Computation. 2000, 4(8): 373-391.
    [27] Holland J H. Adaptation in Natural and Artificial Systems[M]. MA USA: MIT Press Cambridge, 1992.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

LIN Huangbin, TANG Shougao. Evaluation on Energy Equivalent Ductility Index Based on Optimized Algorithm[J].同济大学学报(自然科学版),2018,46(01):0030~0039

Copy
Share
Article Metrics
  • Abstract:1881
  • PDF: 1130
  • HTML: 771
  • Cited by: 0
History
  • Received:March 24,2017
  • Revised:November 19,2017
  • Adopted:October 09,2017
  • Online: February 01,2018
Article QR Code