Analysis of Factor Influence for Longitudinal Impulse of Heavy-haul Train with Electronically Controlled Pneumatic Braking System
CSTR:
Author:
Clc Number:

U272.6

  • Article
  • | |
  • Metrics
  • |
  • Reference [16]
  • |
  • Related [3]
  • | | |
  • Comments
    Abstract:

    The simulation model of electronically controlled pneumatic (ECP) braking system and longitudinal dynamics was built to analyze the influence of initial braking speed, coupler slack and gradient on train longitudinal impulse. The results show that: initial braking speed has no effect on the longitudinal impulse while the gradient affects the longitudinal impulse most, followed by coupler slack; the top 3/8 of train at the rampflat change point is the most dangerous braking position, and this position cannot be changed with the initial braking speed/coupler slack/gradient; when the pressed (tensile) coupler force exceeds 2 000 kN, the maximum value has linear correlation with the minimum (maximum) velocity difference; when the filtered velocity difference is controlled with a range of -0.25~0.25 m?s-1, the possibility that the maximum pressed (tensile) coupler force exceeds 2 000 kN is less than 5%.

    Reference
    [1]王高,涂智文. ECP技术发展及技术研发探讨[J].铁道机车车辆,2014, 34(5): 21-23.
    [2]林晖,钱立新. 重载列车有线电控空气制动系统的研究[J].中国铁道科学,2007,28(1): 63-69.
    [3]刘严超,张国平,等. 我国铁路发展ECP制动技术的可行性[J].铁道车辆,2014,52(8):29-31.
    [4]赵永宾,李培曙. 我国重载货物列车采用ECP制动技术的可行性探讨[J]. 铁道车辆,2007,45(10):28-29.
    [5]张波,钱立新,马大炜,等. 重载列车ECP_DP系统的仿真研究[C]. 铁道科学技术新进展——铁道科学研究院55周年论文集.
    [6]Wright, Eric C. ECP brake: Transitioning from development to deployment. Proceedings of the 2001 IEEE/ASME Joint Railroad Conference, 129-34,2001.
    [7]Chou, M. Modelling and model validation of heavy-haul trains equipped with electronically controlled pneumatic brake systems. Control Engineering Practice,2007,15(4):501-509.
    [8]Zhiwu Huang, Xiaohui Qu, et al. A high efficient and reliable DC-DC converter for Electronically Controlled Pneumatic brake system applications. 40th Annual Conference of the IEEE Industrial Electronics Society, Proceedings, 5012-18,2014.
    [9]Zhuan, X. Optimal scheduling and control of heavy haul trains equipped with electronically controlled pneumatic braking systems. Proceedings of the World Congress on Intelligent Control and Automation, 2006(2):8168-8172.
    [10]Chou, M. Optimal cruise control of heavy-haul trains equipped with electronically controlled pneumatic brake systems. Control Engineering Practice, 2007,15(5):511-519.
    [11]祝露,王晓东,等. 备用制动系统性能比较[J]. 交通运输工程学报,2016,16(1):80-87.
    [12]陆强. 重载列车ECP制动系统方案设计及仿真研究[C]. 成都:西南交通大学,2009.
    [13]魏伟,王强. 坡道上重载列车纵向冲动研究[J]. 振动与冲击,2014,33(5):143-148.
    [14]魏伟,赵连刚. 两万吨列车纵向动力学性能预测[J].大连交通大学学报,2009,30(2):39-43.
    [15]姚寿文. 长达货物列车电控空气制动系统及防滑器的智能控制研究[D]. 北京:铁道部科学研究院,2006.
    [16]赵连刚. 基于制动系统仿真的两万吨列车纵向动力学分析[C]. 大连:大连交通大学,2008.
    Cited by
Get Citation

WU Mengling, ZHU Lu, TIAN Chun. Analysis of Factor Influence for Longitudinal Impulse of Heavy-haul Train with Electronically Controlled Pneumatic Braking System[J].同济大学学报(自然科学版),2018,46(07):0964~0971

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:October 16,2017
  • Revised:May 19,2018
  • Adopted:February 26,2018
  • Online: August 08,2018
Article QR Code