Prediction of Swelling Pressure for Compacted Bentonite
CSTR:
Author:
Clc Number:

TU411.3

  • Article
  • | |
  • Metrics
  • |
  • Reference [47]
  • |
  • Related [20]
  • |
  • Cited by [0]
  • | |
  • Comments
    Abstract:

    Compacted bentonite has been selected as the potential buffer/backfill materials for the deep geological repository of highlevel radioactive nuclear waste; consequently the swelling pressure of compacted bentonite is the key index of its buffering performance. Based on the swelling process of compacted bentonite, the swelling mechanism, prediction models, and experimental verification of swelling pressure were systematically summarized. The existing predication models of bentonite swelling pressure are mainly based on the diffused doublelayer (DDL) theory. The laboratory tests demonstrate the influences of dry density, initial water content, sand content, and other factors on the final swelling pressure of compacted bentonite. The comparison between the model predication and the experimental results shows that the existing models have less fitting to the compacted bentonite with higher montmorillonite content and higher initial dry density. In fact, the swelling process of compacted bentonite includes crystalline swelling and DDL swelling, but the predication models are only used for estimating the DDL swelling, which cannot very well describe the crystalline swelling. The existing prediction models are only applicable to estimating the final swelling pressure of bentonite, but it is difficult to reflect the evolution process of swelling pressure caused by environmental changes during the longterm operation of repository.

    Reference
    [1] 潘自强, 钱七虎. 高放废物地质处置战略研究[M].北京: 原子能出版社, 2009.
    PAN Ziqiang, QIAN Qihu. Strategic Research on Geological Disposal of High-level Radioactive Waste[M]. Beijing: Atomic Energy Press, 2009.
    [2] 孙发鑫, 陈正汉, 秦冰,等.高庙子膨润土–砂混合料的三向膨胀力特性[J]. 岩石力学与工程学报, 2013, 32(1): 200-207.
    SUN Faxin, CHEN Zhenghan, QIN Bin, et al. Characteristics of three-dimensional swelling pressure of gaomiaozi bentonite-sand mixture[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(1): 200-207.
    [3] 郁陈. 非饱和高庙子膨润土的体变特征及其微观机理[D]. 同济大学土木工程学院, 2006.
    YU Chen. Volume Change Characteristics and Its Microscopic mechanism of Unsaturated GMZ Bentonite[D]. Shanghai: Tongji University. College of Civil Engineering, 2006.
    [4] 叶为民, 钱丽鑫, 陈宝, 等. 高压实高庙子膨润土的微观结构特征[J]. 同济大学学报(自然科学版), 2009, 37(1): 31-35.
    YE Weimin, QIAN Lixin, CHEN Bao, et al. Microstructure characteristics of compacted GMZ bentonite[J]. Journal of Tongji University (Natural Science)
    [5] Dixon D, Chandler N, Graham J, et al. Two large-scale sealing tests conducted at atomic energy of Canada''s underground research laboratory: the buffer-container experiment and the isothermal test[J]. Canadian Geotechnical Journal, 2002, 39(3): 503-518.
    [6] Nakashima Y. Nuclear magnetic resonance properties of water-rich gels of Kunigel-V1 bentonite[J]. Journal of Nuclear Science and Technology, 2004, 41(10): 981-992.
    [7] Lloret A, Villar M V. Advances on the knowledge of the thermo-hydro-mechanical behaviour of heavily compacted “FEBEX” bentonite[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2007, 32(8): 701-715.
    [8] Hurel C, Marmier N. Sorption of europium on a MX-80 bentonite sample: experimental and modelling results[J]. Journal of Radioanalytical and Nuclear Chemistry, 2010, 284(1): 225-230.
    [9] 刘月妙, 陈璋如. 内蒙古高庙子膨润土作为高放废物处置库回填材料的可行性[J]. 矿物学报, 2001, 21(3): 541-543.
    LIU Yuemiao, CHEN Zhangru. Feasibility of Gaomiaozi bentonite in Inner Mongolia used as buffer/backfill materials in high-level radioactive waste repository [J]. Acta Mineralogica Sinica, 2001, 21(3): 541-543.
    [10] Mitchell J K. Fundamentals of Soil Behavior[M]. John Wiley and Sons, Inc., New York. 1976.
    [11] Laird D A, Shang C, Thompson M L. Hysteresis in crystalline swelling of smectites[J]. Journal of Colloid & Interface Science, 1995, 171(1): 240-245.
    [12] 钱丽鑫. 高放废物深地质处置库缓冲材料——高庙子膨润土基本特性研究[D]. 上海:同济大学土木工程学院, 2007.
    [13] Liu L. Prediction of swelling pressures of different types of bentonite in dilute solutions[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2013, 434(19): 303-318.
    [14] Saiyouri, Tessier N, Hicher D, et al. Experimental study of swelling in unsaturated compacted clays[J]. Clay Minerals, 2004, 39(4): 469-479.
    [15] Norrish K. 1973. Forces between clay particles[M]. Madrid, Spain: Div. de Ciencas, CSIA. 1972, 375-383.
    [16] Olphen H V. Thermodynamics of interlayer adsorption of water in clays. I.-Sodium vermiculite[J]. Journal of Colloid Science, 1965, 20(8): 822-837.
    [17] Kittrick J A. Interlayer forces in montmorillonite and vermiculite[J]. Soil Science Society of America Journal, 1969, 33(2): 217-222.
    [18] Kittrick J A. Quantitative evaluation of the strong-force model for expansion and contraction of vermiculite[J]. Soil Science Society of America Journal, 1969(2): 222-225.
    [19] Bradbury S E, Williams Q. Contrasting bonding behavior of two hydroxyl-bearing metamorphic minerals under pressure: Clinozoisite and topaz[J]. American Mineralogist, 2003, 88(10): 1460-1470.
    [20] Parker J C, Sparks D L. Hydrostatics of water in Porous Media[M]. Boca R aton, FL: CRC Press, 1986, 209-96.
    [21] Bolt G H. Physico-chemical analysis of the compressibility of pure clays[J]. Géotechnique, 1956, 6(2): 86-93 .
    [22] Bolt G H, Miller R D. Compression studies of illite suspensions[J]. Soil Science Society of America Journal, 1955, 19(3): 285-288.
    [23] Warkentin B P, Bolt G H, Miller R D. Swelling pressure of montmorillonite1[J]. Soil Science Society of America Journal, 1957(5): 495-497.
    [24] Komine H. Simplified evaluation for swelling characteristics of bentonites[J]. Engineering Geology, 2004, 71(3-4): 265-279.
    [25] Sridharan A. Prediction for swelling characteristics of compacted bentonite: discussion[J]. Canadian Geotechnical Journal, 1996, 33(1): 11-22.
    [26] Yong R N, Mohamed A M O. A study of particle interaction energies in wetting of unsaturated expensive clays[J]. Canadian Geotechnical Journal, 1992, 29(6): 1060-1070.
    [27] Sridharan A, Choudhury D. Swelling pressure of sodium montmorillonites[J]. Géotechnique, 2002, 52(6): 459-462.
    [28] Gens A, Alonso E E. A framework for the behaviour of unsaturated expansive clays[J]. Canadian Geotechnical Journal, 1992, 29(6): 1013-1032.
    [29] Low P F. The swelling of clay: II. Montmorillonites[J]. Journal of the Soil Science Society of America, 1980, 44(4): 667-676.
    [30] Pusch R. Mineral–water interactions and their influence on the physical behavior[J]. Canadian Geotechnical Journal, 1982, 19(19): 381-387.
    [31] Yong R N. Soil suction and soil-water potentials in swelling clays in engineered clay barriers[J]. Engineering Geology, 1999, 54(1–2): 3-13.
    [32] Verwey E J. Theory of the stability of lyophobic colloids[J]. Journal of Colloid Science, 1955, 10(2): 224-225.
    [33] Mangelsdorf C S. Effect of Stern-layer conductance on electrokinetic transport properties of colloidal particles[J]. Journal of the Chemical Society Faraday Transactions, 1990, 86(16): 2859-2870.
    [34] Bouty E. H. Helmholtz. Studien über electrische Grenzschichten.[J].Annalen Der Physik, 2010, 243(7): 337-382.
    [35] Gouy, G. Electric charge on the surface of an electrolyte[J]. Journal of Physics, 1910, 4(9): 457.
    [36] David Leonard Chapman. LI. A contribution to the theory of electrocapillarity[J]. Philosophical Magazine, 1913, Edinburgh (148): 475-481.
    [37] 王驹. 高水平放射性废物地质处置:关键科学问题和相关进展[J]. 科技导报, 2016, 34 (15): 51-55.
    WANG Ju. Geological disposal of high-level radioactive waste: key scientific problems and the relevant advance[J]. Science & Technology Review, 2016, 34 (15): 51-55.
    [38] Zhang L, Li J, et al. Evaluation and prediction of the swelling pressures of GMZ bentonites saturated with saline solution[J]. Applied Clay Science, 2015, 105-106:207-216.
    [39] Tripathy S, Sridharan A, Schanz T. Swelling pressures of compacted bentonites from diffuse double layer[J]. Canadian Geotechnical Journal, 2004, 41(3): 437-450.
    [40] 项国圣, 徐永福, 谢胜华. 盐溶液对膨润土微观结构的影响[J]. 东南大学学报(自然科学版), 2016, 46(s1): 230-234.
    Xiang Guosheng, Xu Yongfu, Xie Shenghua. Effects on bentonite microstructure by salt solution[J]. Journal of Southeast University (Natural Science), 2016, 46(s1): 230-234.
    Comments
    Comments
    分享到微博
    Submit
Get Citation

CHEN Yonggui, KUAI Qi, YE Weimin, CUI Yujun. Prediction of Swelling Pressure for Compacted Bentonite[J].同济大学学报(自然科学版),2018,46(12):1628~1636

Copy
Share
Article Metrics
  • Abstract:1607
  • PDF: 942
  • HTML: 589
  • Cited by: 0
History
  • Received:January 04,2018
  • Revised:November 09,2018
  • Adopted:June 28,2018
  • Online: January 04,2019
Article QR Code