Pore-scale Investigation of Water Freezing in Gas Diffusion Layer for Proton Exchange Membrane Fuel Cell
CSTR:
Author:
Clc Number:

TM911.4; TK124

  • Article
  • | |
  • Metrics
  • |
  • Reference [25]
  • |
  • Related
  • | | |
  • Comments
    Abstract:

    In terms of freezing process of liquid water inside gas diffusion layer for proton exchange membrane fuel cell(PEMFC) under pore-scale prospective, a mesoscopic simulation tool is proposed here to be involved in PEMFC-lattice Boltzmann method(LBM). First, true gas diffusion layer structure for PEMFC was built in pore-scale level. Then, accuracy of thermophysical parameters in the model was validated through one-dimensional half-space solidification, two-dimensional solidification in semi-infinite corner and two-dimensional solidification in cavity with porous numerical experiments, proving the effectiveness of application of lattice Boltzmann method on freezing mechanism in gas diffusion layer for PEMFC. Finally, the freezing process of gas diffusion layer with porosity ranging from 0.5 to 0.9 in pore-scale was investigated. The simulation results show that for two-dimensional gas diffusion layer with 0.5, 0.6, 0.7, 0.8 and 0.9 porosity, the dimensionless freezing time F0 is 2.67, 3.11, 3.68, 4.31 and 4.84, respectively and the dimensionless freezing time for cases with natural convection is 0, 0, 0.001, 0.001 and 0.007 less than that without natural convection, respectively.

    Reference
    [1] DAFALLA A M, JIANG F M. Stresses and their impacts on proton exchange membrane fuel cells: A review[J]. International Journal of Hydrogen Energy, 2018, 43(4): 2327.
    [2] 许澎,高源,许思传. 质子交换膜燃料电池停机后吹扫仿真[J]. 同济大学学报:自然科学版, 2017, 45(12): 1873.XU Peng, GAO Yuan, XU Sichuan. Numerical simulation on gas purge after shutdown in proton exchange membrane fuel cell[J]. Journal of Tongji University: (Natural Science), 2017, 45(12): 1873.
    [3] LUO Y Q, JIAO K. Cold start analysis of proton exchange membrane fuel cell[J]. Progress in Energy and Combustion Science, 2018, 64: 29.
    [4] YAO L, PENG J, ZHANG J B, et al. Numerical investigation of cold-start behavior of polymer electrolyte fuel cells in the presence of super-cooled water[J]. International Journal of Hydrogen Energy, 2018, 43(32): 15505
    [5] JIAO K, LI X. Three-dimensional multiphase modeling of cold start processes in polymer electrolyte membrane fuel cells[J]. Electrochimica Acta, 2009, 54(27):6876.
    [6] LUO Y, GUO Q, DU Q, et al. Analysis of cold start processes in proton exchange membrane fuel cell stacks[J]. Journal of Power Sources, 2013, 224(15): 99.
    [7] 许澎,许思传,郭鑫,等. 一种质子交换膜燃料电池冷启动分层数值模型[J]. 同济大学学报:自然科学版, 2019, 47(1): 104.XU Peng, XU Sichuan, GUO Xin, et al. A layered numerical model for cold start in proton exchange membrane fuel cell[J]. Journal of Tongji University: (Natural Science), 2017, 47(1): 104.
    [8] 郭照立,郑楚光. 格子Boltzmann方法的原理及应用[M]. 北京,科学出版社, 2009.GUO Z L, ZHENG C G. Theory and applications of Lattice Boltzmann method[M]. Beijing: Science Press, 2009.
    [9] Gao D, Tian F B, Chen Z, et al. An improved lattice Boltzmann method for solid-liquid phase change in porous media under local thermal non-equilibrium conditions[J]. International Journal of Heat and Mass Transfer, 2017, 110:58-62.
    [10] GAO D Y, CHEN Z Q. Lattice Boltzmann simulation of natural convection dominated melting in a rectangular cavity filled with porous media [J]. International Journal of Thermal Sciences, 2011, 50(4):493.
    [11] LIU Q, HE Y L. Double multiple-relaxation-time lattice Boltzmann model for solid–liquid phase change with natural convection in porous media[J]. Physica A Statistical Mechanics and Its Applications, 2015, 438:94.
    [12] WU W, ZHANG S, WANG S. A novel lattice Boltzmann model for the solid–liquid phase change with the convection heat transfer in the porous media[J]. International Journal of Heat and Mass Transfer, 2017, 104:675.
    [13] 杲东彦,陈振乾,孙东科. 泡沫金属内相变材料融化的格子Boltzmann方法孔隙尺度模拟研究[J]. 工程热物理学报,2016, 37(2): 385.GAO D Y, CHEN Z Q, SUN D K. Lattice Boltzmann simulation of melting of phase change materials in metal foams at pore scale[J]. Journal of Engineering Thermophysics, 2016 37(2):385.
    [14] 王猛,朱卫兵. 基于孔隙尺度的方腔内多孔介质融化模拟研究[J]. 哈尔冰工程大学学报,2015, 36(6): 774.WANG M, ZHU W B. Simulation study for melting of porous media in a square cavity based on the pore scale. Journal of Harbin Enginnering University, 2015, 36(6): 774.
    [15] LI X Y, MA T, LIU J, et al. Pore-scale investigation of gravity effects on phase change heat transfer characteristics using lattice Boltzmann method[J]. Applied Energy, 2018,222(15): 92.
    [16] Huang R, Wu H. Total enthalpy-based lattice Boltzmann method with adaptive mesh refinement for solid-liquid phase change[J]. Journal of Computational Physics, 2016, 315:65.
    [17] Huang R, Wu H. Phase interface effects in the total enthalpy-based lattice Boltzmann model for solid–liquid phase change[J]. Journal of Computational Physics, 2015, 294:346.
    [18] JIAUNG W S, HO J R, KUO C P. Lattice Boltzmann method for the heat conduction problem with phase change [J]. Numerical Heat Transfer Part B Fundamentals, 2001, 39(2):167.
    [19] Chatterjee D, Chakraborty S. An enthalpy-based lattice Boltzmann model for diffusion dominated solid–liquid phase transformation[J], Physics Letters A, 2005,341(1-4): 320.
    [20] ZIEGLER D P. Boundary conditions for lattice Boltzmann simulations[J]. Journal of Statistical Physics, 1993, 71(5): 1171.
    [21] HE X Y, ZOU Q, LUO L S, et al. Analytical solutions for simple flows and analysis of nonslip boundary conditions for the lattice Boltzmann BGK model[J]. Journal of Statistical Physics, 1997, 87(1): 115
    [22] KUO L S, CHEN P H. Numerical implementation of thermal boundary conditions in the lattice Boltzmann method[J]. International Journal of Heat and Mass Transfer, 2009, 52(1-2): 529.
    [23] ZHANG T, SHI B C, GUO Z L, et al. General bounce-back scheme for concentration boundary condition in the lattice-Boltzmann method[J]. Physical Review E, 2012, 85(1): 016701.
    [24] 高源,吴晓燕,孙严博. 新型随机重构微孔隙介质模型与扩散特性[J]. 同济大学学报:自然科学版, 2017, 45(1): 109.GAO Y, WU X, SUN Y. Characterization and diffusion in reconstruction gas diffusion layer based on stochastic method[J]. Journal of Tongji University: (Natural Science), 2017, 45(12): 1831.
    [25] HAHN D W, OZISK M N. Heat conduction fundamentals, third edition[M], John Wiley Sons Inc, New Jersey, 2012.
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

XU Peng, XU Sichuan, TANG Junying, GAO Yuan. Pore-scale Investigation of Water Freezing in Gas Diffusion Layer for Proton Exchange Membrane Fuel Cell[J].同济大学学报(自然科学版),2019,47(12):1791~1800

Copy
Related Videos

Share
Article Metrics
  • Abstract:828
  • PDF: 788
  • HTML: 965
  • Cited by: 0
History
  • Received:February 12,2019
  • Revised:October 13,2019
  • Adopted:September 17,2019
  • Online: January 02,2020
Article QR Code