Study of 2-D Joint Inversion of Direct Current Resistivity and Audio Magnetotelluric Data Using Adaptive Progressive Mesh Refinement Strategy
CSTR:
Author:
Clc Number:

P631.3

  • Article
  • | |
  • Metrics
  • |
  • Reference [71]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    The joint inversion of direct currency resistivity data and audio magnetotelluric data under the condition of unstructured triangle mesh is studied. A step-by-step inversion technique is developed,and an adoptive mesh refinement method is studied based on the model sensitivity information. The inversion from coarse mesh to fine mesh reduces the dependence on the stabilizer. Least computational cost of searching regularization factors is required compared with traditional regularization method. The model gradient is calculated by using the least square method.Therefore,the minimum structure stabilizer is established based on unstructured triangle mesh. The cost function is optimized by using the Gauss-Newton method, and the Gauss-Newton system is solved by using the bi-conjugate gradient stable method, aiming to reduce the memory requirement and ensure the stability of inversion. Both the synthetic and field data are inverted.The inversion resolutions show that the joint inversion of the two data sets improve resolutions, and reduce the non-uniqueness of the regularization inversion problem. Joint inversion can get shallow anomalous bodies, which can cause static shift of the audio magnetelluric method.

    Reference
    [1]于鹏, 王家林, 吴健生,等. 地球物理联合反演的研究现状和分析[J]. 勘探地球物理进展, 2006, 29(2):87-93.Yu P, Wang J L, Wu J S, et al. Review and discussions on geophysical joint inversion[J]. PEG, 2006, 29(2):87-93.
    [2]汤井田, 任政勇, 周聪,等. 浅部频率域电磁勘探方法综述[J]. 地球物理学报, 2015, 58(8):2681-2705.Tang J T, Ren Z Y, Zhou C, et al. Frequency-domain electromagnetic methods for exploration of the shallow subsurface: A review[J]. Chinese J. Geophys. (in Chinese), 2015, 58(8):2681-2705.
    [3]Vozoff K, Jupp D L B. Joint Inversion of Geophysical Data[J]. Geophysical Journal International, 1975, 42(3): 977–991.
    [4]Constable S, Parker R L, Constable C G, et al. Occam’s inversion: A practical algorithm for generating smooth models from electromagnetic sounding data[J]. Geophysics, 1987, 52(3): 289-300.
    [5]Sasaki Y. Two-dimensional joint inversion of magnetoteluuric and dipole-dipole resistivity data[J]. Geophysics, 1989, 54(2):254-262.
    [6]Santos F A, Afonso A, Dupis A, et al. 2D joint inversion of dc and scalar audio-magnetotelluric data in the evaluation of low enthalpy geothermal fields[J]. Journal of Geophysics and Engineering, 2007, 4(1): 53-62.
    [7]Candansayar M E, Tezkan B. Two‐dimensional joint inversion of radiomagnetotelluric and direct current resistivity data[J]. Geophysical Prospecting, 2008, 56(5): 737-749.
    [8]Kalscheuer T, Meqbel N, Pedersen L B. Non-linear model error and resolution properties from two-dimensional single and joint inversions of direct current resistivity and radiomagnetotelluric data[J]. Geophysical Journal International, 2010, 182(3):1174-1188.
    [9]Bastani M, Hubert J, Kalscheuer T, et al. 2D joint inversion of RMT and ERT data versus individual 3D inversion of full tensor RMT data: An example from Trecate site in Italy[J]. Geophysics, 2012, 77(4): WB233–WB243.
    [10]Rosascarbajal M, Linde N, Kalscheuer T, et al. Two-dimensional probabilistic inversion of plane-wave electromagnetic data: Methodology, model constraints and joint inversion with electrical resistivity data[J]. Geophysical Journal International, 2014, 196(3): 1508-1524.
    [11]Shewchuk J R. Triangle: Engineering a 2D quality mesh generator and Delaunay triangulator BT - Applied Computational Geometry Towards Geometric Engineering[C]//LIN M C, MANOCHA D. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996: 203–222.
    [12]Coggon J H. Eletromagnetic and electrical modeling by the finite element method[J]. Geophysics, 1971, 36(1): 132-155.
    [13]Rodi W L. A Technique for Improving the Accuracy of Finite Element Solutions for Magnetotelluric Data[J]. Geophysical Journal International, 1976, 44(2): 483-506.
    [14]Wannamaker P E, Stodt J A, Rijo L. Two-dimensional topographic responses in magnetotellurics modeled using finite elements[J]. Geophysics, 1986, 51(11):2131–2144.
    [15]Key K, Weiss C. Adaptive finite-element modeling using unstructured grids: The 2D magnetotelluric example[J]. geophysics, 2006, 71(6): G291-G299.
    [16]Menke W. Geophysical Data Analysis: Discrete Inverse Theory[M]. San Diego, USA: Academic Press, 1989, pp.64–65.
    [17]Zhdanov M S. Geophysical inverse theory and regularization problems [M]. San Diego, USA: 2002, pp. 50-52.
    [18]Commer M, Newman G A. New advances in controlled source electromagnetic inversion[J]. Geophysical Journal International, 2008, 172(2):513-535.
    [19]Key K. MARE2DEM: A 2-D inversion code for controlled-source electromagnetic and magnetotelluric data[J]. Geophysical Journal International, 2016, 207(1): 571–588.
    [20]deGroot-Hedlin C, Constable S. Occam''s inversion to generate smooth, two-dimensional models from magnetotelluric data[J]. Geophysics, 1990, 55(12): 1613-1624.
    [21]Labrecque D J, Miletto M, Daily W, et al. The effects of noise on Occam''s inversion of resistivity tomography data[J]. Geophysics, 1996, 61(2):538-548.
    [22]Loke M H, Barker R D. Rapid least‐squares inversion of apparent resistivity pseudosections by a quasi‐Newton method1[J]. Geophysical Prospecting, 1996, 44(1): 131-152.
    [23]Yi M J, Sasaki Y. 2-D and 3-D joint inversion of loop–loop electromagnetic and electrical data for resistivity and magnetic susceptibility[J]. Geophysical Journal International, 2015, 203(2):1085-1095.
    [24]Rudin L I, Osher S, Fatemi E, et al. Nonlinear total variation based noise removal algorithms[J]. international symposium on physical design, 1992, 60 (1–4) :259-268.
    [25]Vogel C R, Oman M E. Fast, robust total variation-based reconstruction of noisy, blurred images.[J]. Image Processing IEEE Transactions on, 1998, 7(6):813-824.
    [26]Lima W A, Martins C M, Silva J B C, et al. Total variation regularization for depth-to-basement estimate: Part 2 — Physicogeologic meaning and comparisons with previous inversion methods[J]. Geophysics, 2011, 76(1): I13–I20.
    [27]Last B J, Kubik K. Compact gravity inversion[J]. Geophysics, 1983, 48(48):713-721.
    [28]Guillen A, Menichetti V. Gravity and magnetic inversion with minimization of a specific functional[J]. Geophysics, 1984, 49(8): 1354-1360.
    [29]Mehanee S, Zhdanov M. Two‐dimensional magnetotelluric inversion of blocky geoelectrical structures[J]. Journal of Geophysical Research Solid Earth, 2002, 107(B4):EPM-1-EPM 2-11.
    [30]Zhdanov M, Tolstaya E. Minimum support nonlinear parametrization in the solution of a 3D magnetotelluric inverse problem[J]. Inverse Problems, 2004, 20(3): 937–952.
    [31]Gribenko A, Zhdanov M. Rigorous 3D inversion of marine CSEM data based on the integral equation method[J]. Geophysics, 2007, 72(2):WA73-WA84.
    [32]Portniaguine O, Zhdanov M S. Focusing geophysical inversion images[J]. Geophysics, 1999, 64(3):874-887.
    [33]Blaschek R, H?rdt A, Kemna A. A new sensitivity-controlled focusing regularization scheme for the inversion of induced polarization data based on the minimum gradient support[J]. Geophysics, 2008, 73(2): F45–F54.
    [34]Zhang L, Koyama T, Utada H, et al. Erratum to: A regularized three-dimensional magnetotelluric inversion with a minimum gradient support constraint[J]. Geophysical Journal International, 2012, 189(1):296–316.
    [35]Nguyen F, Robert T, Kemna A, et al. Data-driven selection of the minimum-gradient support parameter in time-lapse focused electrical imaging[J]. Geophysics, 2016, 81(1): A1–A5.
    [36]Loke M H., Acworth I., Dahlin T. A comparison of smooth and blocky inversion methods in 2D electrical imaging surveys[J]. Exploration Geophysics, 2003, 34(3):182-187.
    [37]Farquharson C G. Constructing piecewise-constant models in multidimensional minimum-structure inversions[J]. Geophysics, 2008, 73(1):k1-k9.
    [38]Smith J T, Booker J R. Magnetotelluric inversion for minimum structure[J]. Geophysics, 1988, 53(12):1565-1576.
    [39]Farquharson C, Oldenburg D. Automatic estimation of the trade-off parameter in nonlinear inverse problems using the GCV and L-curve criteria[C]. 70th Ann. Internat. Mtg, 2000: 265–268.
    [40]Haber E, Oldenburg D. A GCV based method for nonlinear ill-posed problems[J]. Computational Geosciences, 2000, 4(1): 41–63.
    [41]Maxwell K W, GAUSS D. A generalized cross validation method for the inverse[J]. Mathematical and Computational Applications, 2010, 15(5): 784–789.
    [42]Hansen P C. Analysis of discrete ill-posed problems by means of the L-curve[J]. Siam Review, 1992, 34(4): 561–580.
    [43]Li Y, Oldenburg D. 3-D inversion of DC resistivity data using an L-curve criterion[C]. 69th Ann. Internat. Mtg, 1999: 251–254.
    [44]Li Y, Oldenburg D W. 3-D inversion of induced polarization data[J]. Geophysics, 2000, 65(6): 1931–1945.
    [45]Mitsuhata Y. Adjustment of regularization in ill-posed linear inverse problems by the empirical Bayes approach[J]. Geophysical Prospecting, 2004, 52(3): 213–239.
    [46]Bardsley J M, Goldes J. Regularization parameter selection methods for ill-posed Poisson maximum likelihood estimation[J]. Inverse Problems, 2009, 25(9): 095005-095022.
    [47]Yi M, Kim J, Chung S. Enhancing the resolving power of least‐squares inversion with active constraint balancing[J]. Geophysics, 2003, 68(3):931-941.
    [48]Yang X, Peng Y, Xiao C, et al. A Comparison of different methods for choosing regularization parameter in regularized MT inversion[C]. IEEE, 2012: 2533–2536.
    [49]Lelièvre P G, Farquharson C G. Gradient and smoothness regularization operators for geophysical inversion on unstructured meshes[J]. Geophysical Journal International, 2013, 195(1): 330–341.
    [50]?zyildirim ?, Candansayar M E, Demirci i, Tezkan B. Two-dimensional inversion of magnetotelluric/radiomagnetotelluric data by using unstructured mesh[J]. Geophysics, 2017, 82(4): E197–E210.
    [51]Candansayar M E. Two-dimensional inversion of magnetotelluric data with CG and SVD: a comparisonal study of different stabilizers[C]. 72nd Ann. Internat. Mtg, 2002: 669–672.
    [52]Rodi W, Mackie R L. Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion[J]. Geophysics, 2001, 66(1): 174–187.
    [53]Loke M H, Dahlin T. A comparison of the Gauss-Newton and quasi-Newton methods in resistivity imaging inversion[J]. Journal of Applied Geophysics, 2002, 49(3): 149–162.
    [54]Avdeev D, Avdeeva A. 3D magnetotelluric inversion using a limited-memory quasi-Newton optimization[J]. Geophysics, 2009, 74(3): F45–F57.
    [55]Avdeeva A, Avdeev D. A limited-memory quasi-Newton inversion for 1D magnetotellurics[J]. Geophysics, 2006, 71(5): G191–G196.
    [56]Mcgillivray P R, Oldenburg D W, Ellis R G, Habashy T M. Calculation of sensitivities for the frequency‐domain electromagnetic problem[J]. Geophysical Journal International, 1994, 116(1): 1–4.
    [57]Farquharson C G, Oldenburg D W. Approximate sensitivities for the electromagnetic inverse problem[J]. Geophysical Journal International, 1996, 126(1): 235–252.
    [58]Grayver A V, Streich R, Ritter O. Three-dimensional parallel distributed inversion of CSEM data using a direct forward solver[J]. Geophysical Journal International, 2013, 193(3):1432-1446.
    [59]Mackie R L, Madden T R. Three-dimensional magnetotelluric inversion using conjugate gradients[J]. Geophysical Journal International, 1993, 115(1): 215-229.
    [60]Jahandari H, Farquharson C G. 3-D minimum-structure inversion of magnetotelluric data using the finite-element method and tetrahedral grids[J]. Geophysical Journal International, 2017, 211(2): 1211–1227
    [61]Plattner A, Maurer H R, Vorloeper J, et al. 3-D electrical resistivity tomography using adaptive wavelet parameter grids[J]. Geophysical Journal International, 2012, 189(1):317-330.
    [62]Molinari M, Blott B H, Cox S J, et al. Optimal imaging with adaptive mesh refinement in electrical impedance tomography.[J]. Physiological Measurement, 2002, 23(1):121-128.
    [63]Haber E, Heldmann S, Ascher U. Adaptive finite volume method for distributed non-smooth parameter identification[J]. Inverse Problems, 2007, 23(4):1659-1676.
    [64]Kim M C, Kim S, Lee K J, et al. Improvement of the electrical impedance tomographic image for the two-phase system with adaptive element grouping technique[J]. Measurement Science Technology, 2004, 15(7):1391-1401.
    [65]Chou T K, Chouteau M, Dubé J. Intelligent meshing technique for 2D resistivity inverse problems[J]. Geophysics, 2016, 81(4):IM45-IM56.
    [66]Jones A G. Static shift of magnetotelluric data and its removal in a sedimentary basin environment[J]. Geophysics, 1988, 53(7):967-978.
    [67]Tournerie B, Chouteau M, Marcotte D. Magnetotelluric static shift: Estimation and removal using the cokriging method[J]. Geophysics, 2007, 72(1):F25-F34.
    [68]Rozenberg G, Hoekstra P. Correction for the static shift in magnetotellurics using transient electromagnetic soundings[J]. Geophysics, 1982, 53(11): Session: M1.3
    [69]Pellerin L, Hohmann G W. Transient electromagnetic inversion remedy for magnetotelluric static shifts[J]. Geophysics, 1990, 55(9): 1242–1250.
    [70]Meju M A. Joint inversion of TEM and distorted MT soundings: Some effective practical considerations[J]. Geophysics, 1996, 61(1):56-65.
    [71]Tripaldi S, Siniscalchi A, Spitzer K. A method to determine the magnetotelluric static shift from DC resistivity measurements in practice[J]. Geophysics, 2010, 75(1):F23-F32.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

LI Man, YU Peng, ZHANG Zhiyong, ZHANG Baosong. Study of 2-D Joint Inversion of Direct Current Resistivity and Audio Magnetotelluric Data Using Adaptive Progressive Mesh Refinement Strategy[J].同济大学学报(自然科学版),2020,48(01):114~122

Copy
Share
Article Metrics
  • Abstract:731
  • PDF: 804
  • HTML: 34
  • Cited by: 0
History
  • Received:March 26,2019
  • Revised:November 21,2019
  • Adopted:September 03,2019
  • Online: January 20,2020
Article QR Code