Active Control of Vertical Vibration for Maglev Train Based on Artificial Intelligence Load Estimation System
CSTR:
Author:
Affiliation:

1.Key Laboratory of Road and Traffic Engineering of the Ministry of Education, Tongji University, Shanghai 201804, China;2.Maglev Transportation Engineering R&D Center, Tongji University, Shanghai 201804, China;3.College of Transportation, Tongji University, Shanghai 201804, China;4.Key Laboratory for Mechanics in Fluid Solid Coupling Systems, Institute of Mechanics of Chinese Academy of Sciences, Beijing 100109, China

Clc Number:

TP273

  • Article
  • | |
  • Metrics
  • |
  • Reference [19]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    An active control strategy of maglev train suspension system based on artificial intelligence load estimation system is proposed in this paper. Firstly, the mathematical model of single-point levitation is given, and the open-loop instability is proven by the Routh-Herwitz criterion. Secondly, considering the load characteristics and the real-time suspension changes, a multi-layer artificial neural network is constructed to control the output of the control variables for the suspension system. Thirdly, the non-dominated sorting genetic algorithm (NSGA) is used to optimize the system parameters. The results show that the proposed control method has better robustness and can still keep relatively small error under large load disturbance.

    Reference
    [1] LEE H W, KIM K C, LEE J. Review of maglev train technologies[J]. IEEE Transactions on Magnetics, 2006, 42(7): 1917.
    [2] SUN Y G, LI W L,QIANG H Y, et al. An experimental study on the vibration of the low-speed maglev train moving on the guideway with sag vertical curves[J]. International Journal of Control and Automation, 2016, 9(4):279.
    [3] 徐飞, 罗世辉, 邓自刚. 磁悬浮轨道交通关键技术及全速度域应用研究[J]. 铁道学报, 2019(3): 40.
    [4] 龙志强, 郝阿明, 常文森. 考虑轨道周期性不平顺的磁浮列车悬浮控制系统设计[J]. 国防科技大学学报, 2003, 25(2): 87.
    [5] LINDLAU J D, KNOSPE C R. Feedback linearization of an active magnetic bearing with voltage control[J]. IEEE Transactions on Control Systems Technology, 2002, 10(1):21.
    [6] 宋文荣, 于国飞, 王延风, 等. 磁悬浮微进给机构的PID控制[J]. 哈尔滨工业大学学报, 2004, 36(1):28.
    [7] 戴利明, 齐斌, 周海波, 等. 磁悬浮运动平台的PID控制[J]. 现代制造工程, 2008(6):86.
    [8] 王辉, 钟晓波, 沈钢. 一种新型磁悬浮线路设计方案及悬浮控制方法[J]. 同济大学学报:自然科学版, 2012, 41(7):1112.
    [9] SUN Y G, QIANG H Y, LIN G B, et al. Dynamic modeling and control of nonlinear electromagnetic suspension systems[J]. Chemical Engineering Transactions, 2015, 46:1039.
    [10] HE G, LI J, CUI P. Nonlinear control scheme for the levitation module of maglev train[J]. Journal of Dynamic Systems, Measurement & Control, 2016,138(7): 1.
    [11] SU X, YANG X, SHI P, et al. Fuzzy control of nonlinear electromagnetic suspension systems[J]. Mechatronics, 2014, 24(4):328.
    [12] WANG H, ZHONG X B, SHEN G. Analysis and experimental study on the maglev vehicle-guideway interaction based on the full-state feedback theory[J]. Journal of Vibration and Control, 2015, 12(2): 51.
    [13] HIRAMOTO K, MATSUOKA T. Active vibration control of structural systems with a preview of a future seismic waveform generated by remote waveform observation data and an artificial intelligence-based waveform estimation system[J]. Journal of Vibration and Control, 2020, 26(17): 1602.
    [14] KRIZHEVSKY A, SUTSKEVER I, HINTON G. ImageNet classification with deep convolutional neural networks[J]. Advances in Neural Information Processing Systems, 2017, 60(6): 84.
    [15] 刘国良, 强文义, 麻亮, 等. 基于粗神经网络的仿人智能机器人的语音融合算法研究[J]. 控制与决策, 2003, 18(3):364.
    [16] CHEN C, XU J Q, JI W, et al. Sliding mode robust adaptive control of maglev vehicle’s nonlinear suspension system based on flexible track: design and experiment[J]. IEEE Access, 2019, 7: 41874.
    [17] BIRLA N, SWARUP A. Optimal preview control: a review[J]. Optimal Control Applications and Methods, 2015, 36(2):241.
    [18] 高媛. 非支配排序遗传算法(NSGA)的研究与应用[D].杭州:浙江大学, 2006.
    [19] CHEN C, XU J Q, LIN G B, et al. Fuzzy adaptive control particle swarm optimization based on T-S fuzzy model of maglev vehicle suspension system[J]. Journal of Mechanical Science and Technology, 2020,34(1):43.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

CHEN Chen, XU Junqi, NI Fei, LIN Guobin, WU Han. Active Control of Vertical Vibration for Maglev Train Based on Artificial Intelligence Load Estimation System[J].同济大学学报(自然科学版),2020,48(9):1344~1352

Copy
Share
Article Metrics
  • Abstract:970
  • PDF: 1165
  • HTML: 112
  • Cited by: 0
History
  • Received:February 24,2020
  • Online: September 27,2020
Article QR Code