Review of Intelligent Decision-Making Technologies for Urban Drainage System
CSTR:
Author:
Affiliation:

College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China

  • Article
  • | |
  • Metrics
  • |
  • Reference [44]
  • |
  • Related [20]
  • |
  • Cited by [0]
  • | |
  • Comments
    Abstract:

    Smart decision-making is the key technology of smart water systems. This paper reviews the realization of intelligent decision-making of urban drainage systems from pipe network diagnosis and evaluation, urban waterlogging prevention and control, and overflow pollution control in rainy days. For drainage pipe detection and assessment, the technical methods for source flow tracking based on water flow and chemical markers monitoring at divided sub-catchments were evaluated. For urban flooding control, the techniques of elaborate simulation of flooding risk area using numerical model, and the real-time forecast of precipitation and local flooding depth using machine-learning method were reviewed; for the drainage overflow pollution control, the optimal control of urban drainage system based on the integration of multi-objective algorithm, numerical model, and machine-learning were discussed. It is proposed that the reliability of the modeling system is the key for smart decision-making in urban drainage systems. Therefore, attention should be paid to the integration of quantitative analysis of water sources in the pipe network and waterlogging risk early warning and optimal operation scheduling of drainage systems.

    Reference
    [1] 徐祖信. 河流污染治理规划理论与实践[M]. 北京:中国环境科学出版社,2003.
    [2] LIAO Zhenliang, ZHI Guozheng, ZHOU Yiwen, et al. To analyze the urban water pollution discharge system using the tracking and tracing approach[J]. Environmental Earth Sciences, 2016, 75:1080. DOI: 10.1007/s12665-016-5881-1.
    [3] 朱晓庆, 殷峻暹, 张丽丽, 等. 深圳市智慧水务应用体系研究[J]. 水利水电技术, 2019, 50(S2):176. DOI:10.13928/j.cnki.wrahe.2019.S2.032.
    [4] 王春华, 杨超, 方适明, 等. 基于“互联网+”的排水智慧化管理研究及应用成效[J]. 中国给水排水, 2016, 32(12): 30. DOI: 10.19853/j.zgjsps.1000-4602.2016.12.007.
    [5] 林好斌, 滕良方, 奚卫红, 等. 宁波市城市排水智能化运行管理系统设计及应用[J]. 中国给水排水, 2016, 32(15): 122. DOI: 10.19853/j.zgjsps.1000-4602.2016.15.026.
    [6] 张国占, 李钢, 张攀. 基于物联网的保定市智慧排水系统建设探讨[J]. 给水排水, 2019, 55(8): 124. DOI: 10.13789/j.cnki.wwe1964.2019.08.024.
    [7] KERKEZ B, GRUDEN C, LEWIS M, et al. Smarter stormwater systems[J]. Environmental Science & Technology, 2016,50: 7267. DOI: 10.1021/acs.est.5b05870.
    [8] NOLAN J R. Computer systems that learn: an empirical study of the effect of noise on the performance of three classification methods[J]. Expert Systems with Applications, 2002,23(1):39. DOI: 10.1016/S0957-4174(02)00026-X.
    [9] MOSELHI O, SHEHAB-ELDEEN T. Classification of defects in sewer pipes using neural networks[J]. Journal of Infrastructure Systems, 2000, 6(3): 97. DOI: 10.1061/(ASCE)1076-0342(2000)6:3(97).
    [10] ZHANG C L, JIANG J, KAMEL M. Intrusion detection using hierarchical neural networks[J]. Pattern Recognition Letters, 2005,26(6):779. DOI: https://doi.org/10.1016/j.patrec.2004.09.045.
    [11] YANG M D, SU T C. Automated diagnosis of sewer pipe defects based on machine learning approaches[J]. Expert Systems with Applications, 2008, 35(3): 1327. DOI: 10.1016/j.eswa.2007.08.013.
    [12] MYRANS J, EVERSON R, KAPELAN Z. Automated detection of faults in sewers using CCTV image sequences[J]. Automation in Construction, 2018, 95: 64. DOI: 10.1016/j.autcon.2018.08.005.
    [13] XU Zuxin, YIN Hailong, LI Huaizheng. Quantification of non-stormwater flow entries into storm drains using a water balance approach[J]. Science of the Total Environment, 2014, 487: 381. DOI: 10.1016/j.scitotenv.2014.04.035.
    [14] MIAO Xiaobo, LV Mou, LIANG Fengchao, et al. Diagnose urban drainage network problem based on Internet of things and big data[J]. MATEC Web of Conferences, 2018. DOI: 10.1051/matecconf/201824602024.
    [15] Environmental Protection Agency. Investigation of inappropriate pollutant entries into storm drainage systems: a user’s guide [R/OL]. [2021-06-14]. https://nepis.epa.gov/Exe/ZyPDF.cgi/30003W8S.PDF?Dockey=30003W8S.PDF.
    [16] Environmental Protection Agency. Illicit discharge detection and elimination: a guidance manual for program development and technical assessments [R/OL]. [2021-06-14]. https://nepis.epa.gov/Exe/ZyPDF.cgi/20017KFK.PDF?Dockey=20017KFK.PDF.
    [17] KRACHT O, GUJER W. Quantification of infiltration into sewers based on time series of pollutant loads[J]. Water Science & Technology,2005,52(3):209. DOI:10.2166/wst.2005.0078.
    [18] SHELTON J M, KIM L, FANG J, et al. Assessing the severity of rainfall derived infiltration and inflow and sewer deterioration based on the flux stability of sewage markers[J]. Water Science & Technology, 2011, 45(20):8683. DOI:10.1021/es2019115.
    [19] HOUHOU J, LARTIGES B S, FRANCE-LANORD C, et al. Isotopic tracing of clear water sources in an urban sewer: a combined water and dissolved sulfate stable isotope approach[J]. Water Research,2010,44(1):256. DOI:10.1016/j.watres.2009.09.024.
    [20] TRAN N H, HU Jiangyong, LI Jinhua, et al. Suitability of artificial sweeteners as indicators of raw wastewater contamination in surface water and groundwater[J]. Water Research, 2014,48:443. DOI:10.1016/j.watres.2013.09.053.
    [21] XU Zuxin, WANG Lingling, YIN Hailong, et al. Source apportionment of non-storm water entries into storm drains using marker species: modeling approach and verification[J]. Ecological Indicators, 2016, 61: 546. DOI: 10.1016/j.ecolind.2015.10.006.
    [22] 徐祖信, 王诗婧, 尹海龙, 等. 基于节点水质监测的污水管网破损位置判定方法[J]. 中国环境科学, 2016, 36(12): 3678. DOI: 10.3969/j.issn.1000-6923.2016.12.020.
    [23] 徐祖信, 王诗婧, 尹海龙, 等. 污水管网中雨水混接来源的高效诊断方法[J]. 同济大学学报(自然科学版), 2017, 45(3): 384. DOI: 10.11908/j.issn.0253-374x.2017.03.012.
    [24] Environmental Protection Agency. Storm water management model user's manual version 5.1 [R/OL]. [2021-06-14]. https://www.epa.gov/sites/production/files/2019-02/documents/epaswmm5_1_manual_master_8-2-15.pdf.
    [25] RIANO-BRICENO G, BARREIRO-GOMEZ J, RAMIREZ-JAIME A, et al. MatSWMM – An open-source toolbox for designing real-time control of urban drainage systems[J]. Environmental Modelling & Software, 2016, 83:143. DOI:10.1016/j.envsoft.2016.05.009.
    [26] MCDONNELL B E, RATLIFF K, TRYBY M E, et al. PySWMM: the Python interface to stormwater management model (SWMM) [J]. The Journal of Open Source Software, 2020,15(52): 2292. DOI: 10.21105/joss.02292.
    [27] ZHAO Zhichao, YIN Hailong, XU Zuxin, et al. Pin-pointing groundwater infiltration into urban sewers using chemical tracer in conjunction with physically based optimization model[J]. Water Research, 2020, 175: 115689. DOI: 10.1016/j.watres.2020.115689.
    [28] 郑卓乐. 排水管道排放污染物贝叶斯统计算法?SWMM耦合溯源模型[D]. 重庆: 重庆大学, 2018.
    [29] CHEN Yangbo, ZHOU Haolan, ZHANG Hui, et al. Urban flood risk warning under rapid urbanization[J]. Environmental Research, 2015, 139: 3. DOI: 10.1016/j.envres.2015.02.028.
    [30] ZHI Guozheng, LIAO Zhenliang, TIAN Wenchong, et al. A 3D dynamic visualization method coupled with an urban drainage model[J]. Journal of Hydrology, 2019,577:123988. DOI: 10.1016/j.jhydrol.2019.123988.
    [31] 尹海龙, 林夷媛, 徐祖信,等. 潮汐河网地区雨天黑臭治理数学模型研究[J]. 水动力学研究与进展, 2020,35(1):113. DOI: 10.16076/j.cnki.cjhd.2020.01.017.
    [32] YAN Jun, JIN Jiaming, CHEN Furong, et al. Urban flash flood forecast using support vector machine and numerical simulation[J]. Journal of Hydroinformatics, 2018, 20(1): 221. DOI: 10.2166/hydro.2017.175.
    [33] HOSSEINI F S, CHOUBIN B, MOSAVI A, et al. Flash-flood hazard assessment using ensembles and Bayesian-based machine learning models: application of the simulated annealing feature selection method[J]. Science of the Total Environment, 2020, 711:135161. DOI: 10.1016/j.scitotenv.2019.135161.
    [34] GEURTS P, ERNST D, WEHENKEL L. Extremely randomized trees[J]. Machine Learning, 2006, 63(1):3. DOI: 10.1007/s10994-006-6226-1.
    [35] 赵志超. 基于Sobol算法的排水管网优化调控模型系统的开发与应用[D]. 上海: 同济大学, 2018.
    [36] SADLER J M, GOODALL J L, BEHL M, et al. Leveraging open source software and parallel computing for model predictive control of urban drainage systems using EPA-SWMM5[J]. Environmental Modelling & Software, 2019, 120: 2. DOI: 10.1016/j.envsoft.2019.07.009.
    [37] 陈丰. 城市排水系统内涝与溢流控制性能评价与优化研究[D]. 北京: 清华大学, 2016.
    [38] 白桦. 不确定条件下分流制城市排水系统优化设计方法研究[D]. 北京: 清华大学, 2016.
    [39] 片山恭介, 君岛和彦, 松井公一, 等. 雨水排水支援系统和支援方法: CN101387128[P]. 2009-03-18.
    [40] DARSONO S,LABADIE J W. Neural-optimal control algorithm for real-time regulation of in-line storage in combined sewer systems[J]. Environmental Modelling & Software, 2007,22(9):1349. DOI: 10.1016/j.envsoft.2006.09.005.
    [41] ZHANG D, MARTINEZ N, LINDHOLM G, et al. Manage sewer in-line storage control using hydraulic model and recurrent neural network[J]. Water Resources Management, 2018,32(6):2079. DOI:10.1007/s11269-018-1919-3.
    [42] ZHANG D, LINDHOLM G, RATNAWEERA H. Use long short-term memory to enhance internet of things for combined sewer overflow monitoring[J]. Journal of Hydrology, 2018, 556: 409. DOI: 10.1016/j.jhydrol.2017.11.018.
    [43] PHAM Q B, ABBA S I, USMAN A G, et al. Potential of hybrid data-intelligence algorithms for multi-station modelling of rainfall[J]. Water Resources Management, 2019,33(15):5067. DOI: 10.1007/s11269-019-02408-3.
    [44] CHIANG Y M, CHANG L C, TSAI M J, et al. Auto-control of pumping operations in sewerage systems by rule-based fuzzy neural networks[J]. Hydrology and Earth System Sciences, 2011,15(1):185. DOI: 10.5194/hess-15-185-2011.
    Comments
    Comments
    分享到微博
    Submit
Get Citation

YIN Hailong, ZHANG Huijin, XU Zuxin. Review of Intelligent Decision-Making Technologies for Urban Drainage System[J].同济大学学报(自然科学版),2021,49(10):1426~1434

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:December 28,2020
  • Online: October 18,2021
Article QR Code