Active Set Method for Solving Real Symmetric Complementary Eigenvalue Problem
CSTR:
Author:
Affiliation:

School of Mathematics, Hunan University, Changsha 410082, China

Clc Number:

O241.6

  • Article
  • | |
  • Metrics
  • |
  • Reference [19]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Based on the sequential quadratic programming algorithm, a class of active set methods for solving real symmetric complementary eigenvalue problems is constructed in this paper. By designing a special strategy with the active set index selection, the iterative sequence generated by the active set method has the characteristics of monotonous decline, and the convergence of the method is theoretically proved. The numerical experimental results show that the method is effective and superior to built-in algorithm of MATLAB in complementarity and iteration time.

    Reference
    [1] SEEGER A. Eigenvalue analysis of equilibrium processes defined by linear complementarity conditions [J]. Linear Algebra and its Applications, 1999, 292(1-3): 1. DOI: 10.1016/S0024-3795(99)00004-X.
    [2] 韩继业, 修乃华, 戚厚铎. 非线性互补理论与算法 [M]. 上海: 上海科学技术出版社, 2006.
    [3] SEEGER A, TORKI M. On eigenvalues induced by a cone constraint [J]. Linear Algebra and its Applications, 2003, 372(3): 181. DOI: 10.1016/S0024-3795(03)00553-6.
    [4] PINTO DA COSTA A, SEEGER A. Cone-constrained eigenvalue problems: theory and algorithms [J]. Computational Optimization and Applications, 2010, 45(1): 25. DOI: 10.1007/s10589-008-9167-8.
    [5] QUEIROZ M, JúDICE J, et al. The symmetric eigenvalue complementarity problem [J]. Mathematics of Computation, 2004, 73(248): 1849. DOI: 10.1090/S0025-5718-03-01614-4.
    [6] PINTO DA COSTA A, MARTINS J A C, FIGUEIREDO I N, et al. The directional instability problem in systems with frictional contacts [J]. Computer Methods in Applied Mechanics and Engineering, 2004, 193( 3-5): 357. DOI: 10.1016/j.cma.2003.09.013.
    [7] MARTINS J A C, PINTO DA COSTA A. Stability of finite-dimensional nonlinear elastic systems with unilateral contact and friction [J]. International Journal of Solids and Structures, 2000, 37(18): 2519. DOI: 10.1016/S0020-7683(98)00291-1.
    [8] PINTO DA COSTA A, MARTINS J A C. A numerical study on multiple rate solutions and onset of directional instability in Quasi-staticfrictional contact problems [J]. Computers and Structures, 2004, 82(17): 1485.
    [9] FERNANDES L M, FUKUSHIMA M, JúDICE J, et al. The second-order cone quadratic eigenvalue complementarity problem [J]. Optimization Methods and Software, 2015, 31(1): 1. DOI: 10.1080/10556788.2015.1040156.
    [10] ADLY S, RAMMAL H. A new method for solving second-order cone eigenvalue complementarity problems [J]. Journal of Optimization Theory and Applications, 2015, 165(2): 563. DOI: 10.1007/s10957-014-0645-0.
    [11] SEEGER A, VICENTE-PéREZ J. On cardinality of Pareto spectra [J]. Electronic Journal of Linear Algebra, 2011, 22(1):758.
    [12] MA Changfeng. The semismooth and smoothing Newton methods for solving Pareto eigenvalue problem [J]. Applied Mathematical Modelling, 2012, 36(1): 279. DOI: 10.1016/j.apm.2011.05.045.
    [13] W?CHTER A, BIEGLER L T. On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming [J]. Mathematical Programming, 2006, 106(1): 25. DOI: 10.1007/s10107-004-0559-y.
    [14] JúDICE J, RAYDAN M, S.ROSA S, et al. On the solution of the symmetric eigenvalue complementarity problem by the spectral projected gradient algorithm [J]. Numerical Algorithms, 2008, 47(4): 391. DOI: 10.1007/s11075-008-9194-7.
    [15] LE THI H A, MOEINI M, DINH T P, et al. A DC programming approach for solving the symmetric Eigenvalue complementarity problem [J]. Computational Optimization and Applications, 2012, 51(3): 1097. DOI: 10.1007/s10589-010-9388-5.
    [16] BRáS C P, FISCHER A, JúDICE J, et al. A block active set algorithm with spectral choice line search for the symmetric eigenvalue complementarity problem [J]. Applied Mathematics and Computation, 2017, 294: 36. DOI: 10.1016/j.amc.2016.09.005.
    [17] MURRAY W. Sequential quadratic programming methods for large-scale problems [J]. Computational Optimization and Applications, 1997, 7(1): 127. DOI: 10.1007/978-0-585-26778-4_8.
    [18] GOULD N I M, TOINT P L. SQP methods for large-scale nonlinear programming [C]// IFIP TC7 Conference on System Modelling and Optimization. Boston: Springer, 1999:149-178.
    [19] 袁亚湘, 孙文瑜. 最优化理论与方法 [M]. 北京:科学出版社, 1997.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

LEI Yuan, ZHU Lin, LI Bin. Active Set Method for Solving Real Symmetric Complementary Eigenvalue Problem[J].同济大学学报(自然科学版),2021,49(11):1526~1532

Copy
Share
Article Metrics
  • Abstract:162
  • PDF: 711
  • HTML: 143
  • Cited by: 0
History
  • Received:January 31,2021
  • Online: November 29,2021
Article QR Code