Application of the Fractional Viscoelastic Model in Interaction of Saturated Soft Soils and Piles
CSTR:
Author:
Affiliation:

1.School of Civil Engineering, Tongji University, Shanghai 200092,China;2.Key Laboratory of Geotechnical and Underground Engineering of the Ministry of Education, Tongji University, Shanghai 200092, China

Clc Number:

TU 443

  • Article
  • | |
  • Metrics
  • |
  • Reference [17]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    To describe the viscoelastic characteristics of saturated soft soils, the fractional Merchant model is introduced, and the stress-strain relationship in the transformed domain is derived through integral transforms. Based on the elastic-viscoelastic correspondence principle, the solution of the fractional transversely isotropic viscoelastic saturated soft soils is obtained, which is the kernel function of the boundary element solution for the soils. Based on the stiffness matrix of a 2-noded pile element subjected to axial loading, the finite element solution for the pile is constructed. The boundary element solution for the soils is coupled with the finite element solution for the pile to solve the interaction between the soils and piles. Several examples are designed to verify the presented theory and to analyze the influence of the fractional order on the pile-soil interaction.

    Reference
    [1] NIUMPRADIT B, KARASUDHI P. Load transfer from an elastic pile to a saturated porous elastic soil[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1981, 5(2): 115. DOI: 10.1002/nag.1610050203.
    [2] SENJUNTICHAI T, SORNPAKDEE N, TEERAWONG J, et al. Time-dependent response of an axially loaded elastic bar in a multilayered poroelastic medium[J]. Journal of Engineering Mechanics ASCE, 2007, 133(5): 578. DOI: 10.1061/(ASCE)0733-9399(2007)133:5(578).
    [3] 王建华, 陆建飞, 沈为平. Biot固结理论在单桩负摩擦研究中的应用[J]. 岩土工程学报, 2000, 22(5): 590.
    [4] 王建华, 陆建飞, 沈为平. 层状地基中考虑固结和流变的垂直单桩的理论分析[J]. 水利学报, 2001, 32(4): 57. DOI: 10.13243/j .cnki .slxb.2001.04.010.
    [5] 吴文兵, 窦斌, 王奎华, 等. 静荷载作用下黏弹性地基单桩沉降的时间效应[J]. 建筑科学与工程学报, 2012, 29(3): 73.
    [6] FENG S, LI X, JIANG F, et al. A nonlinear approach for time-dependent settlement analysis of a single pile and pile groups[J]. Soil Mechanics and Foundation Engineering, 2017, 54(1): 7. DOI: 10.1007/s11204-017-9426-8.
    [7] AI Z Y, DAI Y C, CHENG Y C. Time-dependent analysis of axially loaded piles in transversely isotropic saturated viscoelastic soils[J]. Engineering Analysis with Boundary Elements, 2019, 101: 173. DOI: 10.1016/j.enganabound.2019.01.004.
    [8] 张为民. 一种采用分数阶导数的新流变模型理论[J]. 湘潭大学自然科学学报, 2001, 23(1): 30. DOI: 10.13715/j.cnki.nsjxu.2001.01.007.
    [9] YIN D S, H W, CHENG C. Fractional order constitutive model of geomaterials under the condition of triaxial test[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2013, 37(8): 961. DOI: 10.1002/nag.2139.
    [10] 刘忠玉, 杨强. 基于分数阶Kelvin模型的饱和黏土一维流变固结分析[J]. 岩土力学, 2017, 38(12): 3680. DOI: 10.16285/j.rsm.2017.12.036.
    [11] AI Z Y, ZHAO Y Z, LIU W J. Fractional derivative modeling for axisymmetric consolidation of multilayered cross-anisotropic viscoelastic porous media[J]. Computers and Mathematics with Applications, 2020, 79(5): 1321. DOI: 10.1016/j.camwa.2019.08.033.
    [12] AI Z Y, ZHAO Y Z, SONG X, et al. Multi-dimensional consolidation analysis of transversely isotropic viscoelastic saturated soils[J]. Engineering Geology, 2019, 253: 1. DOI: 10.1016/j.enggeo.2019.02.022.
    [13] KOELLER R C. Applications of fractional calculus to the theory of viscoelasticity[J]. Transactions of the ASME Journal of Applied Mechanics, 1984, 51(2): 299. DOI: 10.1115/1.3167616.
    [14] 陈文. 力学与工程问题的分数阶导数建模[M]. 北京: 科学出版社,2010.
    [15] SNEDDON IN. The use of integral transform[M]. New York: McGraw-Hill,1972.
    [16] 魏培君, 张双寅, 吴永礼. 黏弹性力学的对应原理及其数值反演方法[J]. 力学进展, 1999, 29(3): 317.
    [17] 李西斌. 软土流变固结理论与试验研究[D]. 杭州: 浙江大学, 2005.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

AI Zhiyong, ZHAO Yongzhi, LIU Wenjie. Application of the Fractional Viscoelastic Model in Interaction of Saturated Soft Soils and Piles[J].同济大学学报(自然科学版),2021,49(11):1533~1538

Copy
Share
Article Metrics
  • Abstract:208
  • PDF: 940
  • HTML: 109
  • Cited by: 0
History
  • Received:October 31,2020
  • Online: November 29,2021
Article QR Code