Numerical Simulation of Dynamic Properties of Thin-Film Temperature Sensor Inside PEMFC
CSTR:
Author:
Affiliation:

School of Automotive Studies, Tongji University, Shanghai 201804, China

Clc Number:

U461

  • Article
  • | |
  • Metrics
  • |
  • Reference [25]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    The dynamic properties of thin-film temperature sensors with different sizes are investigated in detail through numerical simulation and system identification modeling. A one-dimensional transient heat transfer model for the sensor is built based on its location in the proton exchange membrane fuel cell (PEMFC). The dynamic mathematical model, dynamic performance indicators, and dynamic error are obtained by employing COMSOL simulation and the system identification method. Notably, several significant dynamic parameters including working frequency bands, delay time, rise time as well as dynamic error peak, are determined for insulation layers of 1 μm, 2 μm, 3 μm, 5 μm, and 10 μm thick, and a real thin-film sensor is fabricated and calibrated. The results demonstrate that the sensor dynamic performance reduces with the growth of the insulation layer thickness. This paper reports a novel method to identify whether a thermal probe can capture the internal dynamic temperature variety of PEMFC, thus benefiting the further development of thermal probe on the research for PEMFC dynamic temperature variation under transient conditions, which is likely to inspire the sensor design contained physical parameters selection and structural design.

    Reference
    [1] WANG Q , DAI N , ZHENG J , et al . Preparation and catalytic performance of Pt supported on Nafion (R) functionalized carbon nanotubes[J]. J Electroanal Chem, 2019, 854: 113508.
    [2] ALI S T , LEB K J , NIELSEN L P , et al . Thin film thermocouples for in situ membrane electrode assembly temperature measurements in a polybenzimidazole-based high temperature proton exchange membrane unit cell[J]. J Power Sources, 2010, 195(15): 4835-4841.
    [3] LEE C Y , CHEN C H , CHIU C Y , et al . Application of flexible four-in-one microsensor to internal real-time monitoring of proton exchange membrane fuel cell[J]. Sensors, 2018, 18(7).
    [4] HE S H , MENCH M M , TADIGADAPA S . Thin film temperature sensor for real-time measurement of electrolyte temperature in a polymer electrolyte fuel cell[J]. Sens Actuator A-Phys, 2006, 125(2): 170-177.
    [5] LEE S K , ITO K , SASAKI K . Temperature measurement in through-plane direction in PEFC with a fabricated in-line thermocouple and supporter[J]. ECS Transactions, 2009, 25(1).
    [6] NISHIMURA A , KAMIYA S , OKADO T , et al . Heat and mass transfer analysis in single cell of PEFC using different PEM and GDL at higher temperature[J]. International Journal of Hydrogen Energy, 2019, 44(56): 29631-29640.
    [7] LIN H , CAO T F , CHEN L , et al . In situ measurement of temperature distribution within a single polymer electrolyte membrane fuel cell[J]. International Journal of Hydrogen Energy, 2012, 37(16): 11871-11886.
    [8] GUO H , WANG M H , LIU J X , et al . Temperature distribution on anodic surface of membrane electrode assembly in proton exchange membrane fuel cell with interdigitated flow bed[J]. Journal of Power Sources, 2015, 273: 775-783.
    [9] SERIO B , NIKA P , PRENEL J P . Static and dynamic calibration of thin-film thermocouples by means of a laser modulation technique[J]. Rev Sci Instrum, 2000, 71(11): 4306-4313.
    [10] COOTE J M , TORII R , DESJARDINS A E . Dynamic characterisation of fibre-optic temperature sensors for physiological monitoring[J]. Sensors, 2021, 21(1).
    [11] MINKINA W . Theoretical and experimental identification of the temperature sensor unit step response non-linearity during air temperature measurement[J]. Sens Actuator A-Phys, 1999, 78(2/3): 81-87.
    [12] RUPNIK K , KUTIN J , BAJSIC I . Identification and prediction of the dynamic properties of resistance temperature sensors[J]. Sens Actuator A-Phys, 2013, 197: 69-75.
    [13] VIE P, KJELSTRUP S . Thermal conductivities from temperature profiles in the polymer electrolyte fuel cell[J]. Electrochim Acta, 2004, 49(7): 1069-1077.
    [14] BURHEIM O , VIE P, PHAROAH J G , et al . Ex situ measurements of through-plane thermal conductivities in a polymer electrolyte fuel cell[J]. J Power Sources, 2010, 195(1): 249-256.
    [15] HAO W , BERG P , LI X . Non-isothermal transient modeling of water transport in PEM fuel cells[J]. J Power Sources, 2007, 165(1): 232-243.
    [16] SHAH A A , KIM G S , SUI P C . Transient non-isothermal model of a polymer electrolyte fuel cell[J]. J Power Sources, 2007, 163(2): 793-806.
    [17] GOSHTASBI A , GARCíA-SALABERRI P , CHEN J , et al . Through-the-membrane transient phenomena in PEM fuel cells: a modeling study[J]. J Electrochem Soc, 2019, 166(7): F3154-F3179.
    [18] BOCK R , KAROLIUSSEN H , POLLET B G , et al . The influence of graphitization on the thermal conductivity of catalyst layers and temperature gradients in proton exchange membrane fuel cells[J]. Int J Hydrog. Energy, 2018, 45(2): 1335-1342.
    [19] ZHANG G , JIAO K . Three-dimensional multi-phase simulation of PEMFC at high current density utilizing Eulerian-Eulerian model and two-fluid model[J]. Energy Conv Manag, 2018, 176(11): 409-421.
    [20] WANG B , WU K , YANG Z , et al . A quasi-2D transient model of proton exchange membrane fuel cell with anode recirculation[J]. Energy Conv Manag, 2018, 171: 1463-1475.
    [21] MUIRHEAD D , BANERJEE R , GEORGE M G , et al . Liquid water saturation and oxygen transport resistance in polymer electrolyte membrane fuel cell gas diffusion layers[J]. Electrochim Acta, 2018, 274: 250-265.
    [22] LEI X , LIU X , ALAJE T , et al . A two-phase flow and non-isothermal agglomerate model for a proton exchange membrane (PEM) fuel cell[J]. Energy, 2014, 73: 618-634.
    [23] LI Y , ZHANG Z , HAO X , et al . Dynamic calibration method of temperature sensor based on Quasi-delta pulse temperature excitation[J]. Microw Opt Technol Lett, 2018, 60(1): 212-219.
    [24] KAR K , ROBERTS S , STONE R , et al . Instantaneous exhaust temperature measurements using thermocouple compensation techniques[C]//SAE International Conference Paper. 2004, SAE Technical Papers 113:1-1418. DOI:10.4271/2004-01-1418 .
    [25] WANG Q , TANG F , LI B , et al . Numerical analysis of static and dynamic heat transfer behaviors inside proton exchange membrane fuel cell[J]. J Power Sources, 2021, 488: 229419. DOI:10.1016/j.jpowsour.2020.229419 .
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

YUAN Lin, WANG Qianqian, TANG Fumin, LI Bing, MING Pingwen, ZHANG Cunman. Numerical Simulation of Dynamic Properties of Thin-Film Temperature Sensor Inside PEMFC[J].同济大学学报(自然科学版),2021,49(S1):245~253

Copy
Share
Article Metrics
  • Abstract:233
  • PDF: 380
  • HTML: 92
  • Cited by: 0
History
  • Received:October 23,2021
  • Online: February 28,2023
Article QR Code