Simulative Discrimination and Analysis of Clay Muck Blockage in Earth Pressure Balance Shield Chamber
CSTR:
Author:
Affiliation:

1.Key Laboratory of Road and Traffic Engineering of the Ministry of Education, Tongji University, Shanghai 201804, China;2.Shanghai Key Laboratory of Rail Infrastructure Durability and System Safety, Tongji University, Shanghai 201804, China

Clc Number:

U455.43

  • Article
  • | |
  • Metrics
  • |
  • Reference [36]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    In this paper, an evaluation index for the muck status inside chambers based on shear plate torque is proposed. Then multiple sets of model tests are then conducted to reveal the change characteristics of this index before and after the clogging of clay muck inside the chamber. Finally, a real-time method for judging the muck clogging is established. The results show that the tendency of muck adhesion gradually develops toward the cutter head after the difference appears in the angular velocity of the muck around the central axis near the partition. At the same time, muck empties at the top of the chamber. Muck blockage eventually occurred. The occurrence of the void zone is the preliminary stage of the muck blockage and can be identified by the difference between shear plate torques on the top and underside of the shield chamber.

    Reference
    [1] 周顺华. 城市轨道交通施工力学的新挑战[J]. 中国科学: 技术科学, 2016,46: 560.
    [2] MICHAEL F. Settlements induced by EPB heading-with a special review on empirical and numerical analysis[D]. Stuttgart : University of Applied Sciences Stuttgart, 2008.
    [3] 许恺, 季昌, 周顺华. 砂性土层盾构掘进面前土体改良现场试验[J]. 土木工程学报, 2012, 45(9): 147.
    [4] 张润来, 宫全美, 周顺华, 等. 砂卵石地层土压平衡盾构施工渣土改良试验[J]. 同济大学学报(自然科学版), 2019, 47(5): 673.
    [5] 郭彩霞, 孔恒, 王梦恕. 无水大粒径漂卵砾石地层土压平衡盾构施工渣土改良分析[J]. 土木工程学报, 2015, 48(S1): 201.
    [6] 王助锋, 冯欢欢. 泥质粉砂岩地层泥水盾构防止刀盘结泥饼针对性改进[J]. 现代隧道技术, 2017, 54(6): 217.
    [7] 竺维彬, 鞠世健. 盾构施工泥饼(次生岩块)的成因及对策[J]. 地下工程与隧道, 2003, 2: 25.
    [8] 侯凯文, 王崇, 江杰, 等. 南宁地铁2号线盾构选型设计与适应性分析[J]. 隧道建设, 2017, 37(8): 1037.
    [9] 杨益, 朱文骏, 李兴高, 等. 老黏土地层土压盾构刀盘堵塞渣土改良效果评价方法[J]. 北京交通大学学报, 2019, 43(6): 43.
    [10] 方勇, 王凯, 陶力铭, 等. 黏性地层面板式土压平衡盾构刀盘泥饼堵塞试验研究[J].岩土工程学报, 2020, 42(9): 1651.
    [11] VINAI R, OGGERI C, PEILA D. Soil conditioning of sand for EPB applications: A laboratory research[J]. Tunnelling and Underground Space Technology, 2008, 23(3): 308.
    [12] PEILA D, OGGERI C, BORIO L. Using the slump test to assess the behavior of conditioned soil for EPB tunneling [J]. Environmental and Engineering Geoscience, 2009, 15(3): 167.
    [13] GHARAHBAGH E, ROSTAMI J, TALEBI K. Experimental study of the effect of conditioning on abrasive wear and torque requirement of full face tunneling machines[J]. Tunnelling and Underground Space Technology, 2014, 41: 127.
    [14] MESSERKLINGER S, ZUMSTEG R, PUZRIN A M. A new pressurized vane shear apparatus[J]. Geotechnical Testing Journal, 2011, 34(2): 1.
    [15] MENG Q L, QU F Z, LI S J. Experimental investigation on viscoplastic parameters of conditioned sands in earth pressure balance shield tunneling [J]. Journal of Mechanical Science and Technology, 2011, 25(9): 2259.
    [16] ZUMSTEG R, PL?TZE M, PUZRIN A M. Effect of soil conditioners on the pressure and rate-dependent shear strength of different clays [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138: 1138.
    [17] SASS I, BURBAUM U. A method for assessing adhesion of clays to tunneling machines[J]. Bulletin of Engineering Geology and the Environment, 2009, 68: 27.
    [18] HEUSER M, SPAGNOLI G, LEROY P, et al. Electro-osmotic flow in clays and its potential for reducing clogging in mechanical tunnel driving[J]. Bulletin of Engineering Geology and the Environment, 2012, 71(4): 721.
    [19] THEWES M, HOLLMANN F. Assessment of clay soils and clay-rich rock for clogging of TBMs[J]. Tunnelling and Underground Space Technology, 2016, 57: 122.
    [20] BASMENJ A K, MIRJAVAN A, GHAFOORI M, et al. Assessment of the adhesion potential of kaolinite and montmorillonite using a pull-out test device[J]. Bulletin of Engineering Geology and the Environment, 2016, 76(4): 1507.
    [21] HERNANDEZ Y, KANG C, LI Y L, et al. Mechanical properties of clayey soil relevant for clogging potential[J]. International Journal of Geotechnical Engineering, 2018, 12(6): 529.
    [22] LIU P, WANG S Y, GE L, et al. Changes of Atterberg limits and electrochemical behaviors of clays with dispersants as conditioning agents for EPB shield tunnelling[J]. Tunnelling and Underground Space Technology, 2018, 73: 244.
    [23] DE O, MARKUS T, DIEDERICHS M, et al. EPB tunnelling through clay-sand mixed soils: Proposed methodology for clogging evaluation[J]. Geomechanics and Tunnelling, 2018, 11(4): 375.
    [24] YE X, WANG S Y, YANG J S, et al. soil conditioning for epb shield tunneling in argillaceous siltstone with high content of clay minerals: case study[J]. International Journal of Geomechanics, 2016, 17(4): 05016002.
    [25] DOBASHI H, MATSUDA M, MATSUBARA K, et al. Development of technology to control and manage muck flow inside EPB shield chamber[J]. Journal of JSCE, 2013, 66(2): 90.
    [26] 孙吉主, 肖文辉. 基于透明土的盾构隧道模型试验设计研究[J]. 武汉理工大学学报, 2011, 33 (5): 108.
    [27] ISKANDER M, LAI J, OSWALD CJ, et al. Development of a transparent material to model the geotechnical properties of soils [J]. Geotechnical Testing Journal,1994,17(5) : 425.
    [28] ALLERSMA H G B. Using imaging technologies in experimental geotechnics. imaging technologies: techniques and applications in civil engineering[C/CD]// Second International Conference Engineering Foundation, and Imaging Technologies Committee of the Technical Council on Computer Practices. [S.l.]: American Society of Civil Engineers, 1998.
    [29] NI Q, HIRD C C, GUYMER I. Physical modelling of pile penetration in clay using transparent soil and particle image velocimetry [J]. Géotechnique, 2010, 60 (2): 121.
    [30] 宫全美, 周俊宏, 周顺华, 等. 透明土强度特性及模拟黏性土的可行性试验[J]. 同济大学学报(自然科学版), 2016, 44 (6): 853.
    [31] KASHIMA Y, KONDO N, INOUE M. Development and application of the DPLEX shield method: Results of experiment using shield and segment models and application of the method in tunnel construction[J]. Tunnelling and Underground Space Technology, 1996, 11(1): 45.
    [32] NOMOTO T, IMAMURA S, HAGIWARA T, et al. Shield tunnel construction in centrifuge[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1999, 125(4): 289.
    [33] XU Q W, ZHU H H, DING W Q, et al. Laboratory model tests and field investigations of EPB shield machine tunnelling in soft ground in shanghai[J]. Tunnelling and Underground Space Technology, 2011, 6: 1.
    [34] HU X Y, HE C, WALTON G, et al. Laboratory model test of EPB shield tunneling in a cobble-rich soil[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2020, 146(10): 04020112.
    [35] LI L P, SUN S Q, WANG J, et al. Development of compound EPB shield model test system for studying the water inrushes in karst regions[J]. Tunnelling and Underground Space Technology, 2020, 101: 103404.
    [36] BEZUIJEN A, TALMON A M. Soil pressures at the cutting wheel and the pressure bulkhead of an EPB-shield[C]//8th International symposium on Geotechnical Aspects of Underground Construction in Soft Ground (IS-Seoul).[S.l]: CRC Press, 2014: 523-529.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

JI Chang, ZHOU Shunhua, YAO Qiyu, JIN Yuyin, OUYANG Wanlin. Simulative Discrimination and Analysis of Clay Muck Blockage in Earth Pressure Balance Shield Chamber[J].同济大学学报(自然科学版),2022,50(1):60~69

Copy
Share
Article Metrics
  • Abstract:280
  • PDF: 841
  • HTML: 100
  • Cited by: 0
History
  • Received:April 26,2021
  • Online: February 17,2022
Article QR Code