Numerical Simulation of Atmospheric Boundary Layer Considering Wind Veering Based on Modified Shear-Stress Transport k-ω Turbulence Model
CSTR:
Author:
Affiliation:

State Key Laboratory for Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, China

Clc Number:

O357.5+2;TU973+.32

  • Article
  • | |
  • Metrics
  • |
  • Reference [38]
  • |
  • Related [5]
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    Based on the shear-stress transport (SST) k-ω model, a “modified SST k-ω model” was proposed by modifying the model parameters, the source terms, and the turbulent viscosity. A computational fluid dynamics (CFD) simulation of atmospheric boundary layer (ABL) considering wind veering was performed by using this modified model. The self-sustainable method was discussed in detail including the precursor simulations and the main simulations. The research shows that the simulation results of the modified SST k-ω model are consistent with field measurement values. The physical quantities can be self-sustained well by applying the wind profiles obtained from the precursor simulations as inflow conditions in the main simulations.

    Reference
    [1] RICHARDS P J, HOXEY R P. Appropriate boundary conditions for computational wind engineering models using the k-ε turbulence model [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1993, 46/47: 145.
    [2] FRANKE J, HELLSTEN A, SCHLüNZEN H, et al. Best practice guideline for the CFD simulation of flows in the urban environment [M]. Brussels: Cost Office, 2007.
    [3] TOMINAGA Y, MOCHIDA A, YOSHIE R, et al. AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96(10): 1749.
    [4] BLOCKEN B, STATHOPOULOS T, CARMELIET J. CFD simulation of the atmospheric boundary layer: wall function problems [J]. Atmospheric Environment, 2007, 41(26): 238.
    [5] HARGREAVES D M, WRIGHT N G. On the use of the k–ε model in commercial CFD software to model the neutral atmospheric boundary layer [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2007, 95(5): 355.
    [6] 方平治, 顾明, 谈建国, 等. 数值模拟大气边界层中解决壁面函数问题方法研究[J]. 振动与冲击, 2015, 34(2): 85.
    [7] YANG Y, GU M, CHEN S, et al. New inflow boundary conditions for modelling the neutral equilibrium atmospheric boundary layer in computational wind engineering [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2009, 97(2): 88.
    [8] YANG Y, XIE Z, GU M. Consistent inflow boundary conditions for modelling the neutral equilibrium atmospheric boundary layer for the SST k-ω model [J]. Wind and Structures, 2017, 24(5): 465.
    [9] 唐煜, 郑史雄, 赵博文, 等. 平衡大气边界层自保持问题的研究[J]. 工程力学, 2014, 31(10): 129.
    [10] PARENTE A, GORLé C, BEECK J VAN , et al. Improved k–ε model and wall function formulation for the RANS simulation of ABL flows [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2011, 99(4): 267.
    [11] PARENTE A, GORLé C, BEECK J VAN , et al. A comprehensive modelling approach for the neutral atmospheric boundary layer: consistent inflow conditions, wall function and turbulence model [J]. Boundary-Layer Meteorology, 2011, 140(3): 411.
    [12] LONGO R, FERRAROTTI M, SáNCHEZ C G, et al. Advanced turbulence models and boundary conditions for flows around different configurations of ground-mounted buildings [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2017, 167: 160.
    [13] O’SULLIVAN J P, ARCHER R A, FLAY R G J. Consistent boundary conditions for flows within the atmospheric boundary layer [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2011, 99(1): 65.
    [14] RICHARDS P J, NORRIS S E. Appropriate boundary conditions for computational wind engineering models revisited [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2011, 99(4): 257.
    [15] SIMIU E, SCANLAN R H. Wind effects on structures: fundamentals and applications to design [M]. New York: John Wiley & Sons, 1996.
    [16] 赵鸣. 大气边界层动力学[M]. 北京: 高等教育出版社, 2006.
    [17] 谢霁明. 超高层建筑抗风设计的现状与展望[C]// 第十五届全国结构风工程学术会议论文集. 北京: 人民交通出报社, 2011: 69-77.
    [18] 吴迪. 千米级超高层建筑气动性能研究[D]. 北京: 北京交通大学, 2015.
    [19] 中华人民共和国住房和城乡建设部. 建筑结构荷载规范:GB 50009—2012[S]. 北京: 中国建筑工业出版社, 2012.
    [20] SIMIU E, HECKERT N A, YEO D H. Planetary Boundary Layer Modeling and Standard Provisions for Supertall Building Design [J]. Journal of Structural Engineering, 2017, 143(8): 06017002.
    [21] 张艳辉. 超高层建筑结构旋转风荷载效应研究[D]. 哈尔滨: 哈尔滨工业大学, 2013.
    [22] TOMINAGA Y. Flow around a high-rise building using steady and unsteady RANS CFD: Effect of large-scale fluctuations on the velocity statistics [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2015, 142: 93.
    [23] KOBLITZ T, BECHMANN A, SOGACHEV A, et al. Computational fluid dynamics model of stratified atmospheric boundary-layer flow [J]. Wind Energy, 2015, 18(1): 75.
    [24] 冯成栋, 顾明. 基于RANS 对考虑风向随高度偏转的大气边界层自保持研究[J]. 工程力学, 2019, 36(2): 26.
    [25] APSLEY D D, CASTRO I P. A limited-length-scale k-ε model for the neutral and stably-stratified atmospheric boundary layer [J]. Boundary-Layer Meteorology, 1997, 83(1): 75.
    [26] ANSYS Inc. ANSYS Fluent Theory Guide Release 15.0 [M]. [S.l.]: ANSYS Inc., 2013.
    [27] LETTAU H. A re-examination of the “Leipzig wind profile” considering some relations between wind and turbulence in the frictional layer [J]. Tellus, 1950, 2(2): 125.
    [28] EKMAN V W. On the influence of the earth’s rotation on ocean-currents [J]. Arkiv for Matematik Astronomi Och Fysik, 1905, 2(11): 1.
    [29] YEO D H. Practical estimation of veering effects on high-rise structures: A database-assisted design approach [J]. Wind and Structures, 2012, 15(5): 355.
    [30] BROST R A, WYNGAARD J C, LENSCHOW D H. Marine stratocumulus layers. Part II: Turbulence budgets [J]. Journal of the Atmospheric Sciences, 1982, 39(4): 818.
    [31] GRANT A L M. Observations of boundary layer structure made during the 1981 KONTUR experiment [J]. Quarterly Journal of the Royal Meteorological Society, 1986, 112(473): 825.
    [32] ESAU I. Simulation of Ekman boundary layers by large eddy model with dynamic mixed subfilter closure [J]. Environmental Fluid Mechanics, 2004, 4(3): 273.
    [33] 郑徳乾. 基于LES的结构风荷载及气弹响应数值模拟研究[D]. 上海: 同济大学, 2011.
    [34] DETERING H W, ETLING D. Application of the E-ε turbulence model to the atmospheric boundary layer [J]. Boundary-Layer Meteorology, 1985, 33(2): 113.
    [35] Engineering Sciences Data Unit (ESDU). Strong winds in the atmospheric boundary layer. Part I: mean-hourly wind speeds (Data Item 82026) [S]. London: ESDU International, 2006.
    [36] LI Q S, ZHI L, HU F. Boundary layer wind structure from observations on a 325m tower [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2010, 98(12): 818.
    [37] DREW D R, BARLOW J F, LANE S E. Observations of wind speed profiles over Greater London, UK, using a Doppler lidar [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2013, 121: 98.
    [38] CAI X, HUO Q, KANG L, et al. Equilibrium atmospheric boundary-layer flow: computational fluid dynamics simulation with balanced forces [J]. Boundary-Layer Meteorology, 2014, 152(3): 349.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

FENG Chengdong, GU Ming. Numerical Simulation of Atmospheric Boundary Layer Considering Wind Veering Based on Modified Shear-Stress Transport k-ω Turbulence Model[J].同济大学学报(自然科学版),2022,50(6):821~830

Copy
Share
Article Metrics
  • Abstract:249
  • PDF: 537
  • HTML: 149
  • Cited by: 0
History
  • Received:June 22,2021
  • Online: July 04,2022
Article QR Code