Bathymetric Extraction Method of Nearshore Based on ICESat-2/ATLAS Data
CSTR:
Author:
Affiliation:

1.Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China;2.International Research Center of Big Data for Sustainable Development Goals, Beijing 100094, China;3.College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China

Clc Number:

P237

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Water depth is an important topographical parameter that characterizes shallow ocean and coastal environment. Photon-counting light detection and ranging (LiDAR) can penetrate a certain depth of water and provide reliable date support for water depth information extraction. Taking the islands and reefs in the South China Sea as an example, this paper uses the only in-orbit spaceborne photon-counting LiDAR - Ice, Cloud and land Elevation Satellite-2/Advanced Topographic Laser Altimeter System (ICESat-2/ATLAS) to carry out research on depth extraction and accuracy evaluation in shallow water areas of islands and reefs. Firstly, confidence parameter is adopted to remove the coarse noise photons, and the photons in the water surface and bottom are separated according to their density. Secondly, interval estimate and the modified ordering points to identify the clustering structure (OPTICS) are utilized to filter out noise photons in the water surface and bottom respectively, and the modified OPTICS is changed twice by the filter parameters. Then the water surface elevation is obtained by using the random sample consensus (RANSAC) algorithm. Thirdly, the bathymetric information is achieved by the refraction and tide correction. Finally, the airborne bathymetric LiDAR data of South China Sea is used to validate and evaluate the bathymetric accuracy. Compared with the depth results extracted from the high confidence photons and adaptive variable ellipse filtering bathymetric method (AVEBM), the proposed noise removal algorithm has a higher F value, which is increased by 5.87% and 3.38% respectively. The experimental results indicated that the R2 of bathymetric results obtained by ATLAS and airborne LiDAR is 0.91 and root mean square error (RMSE) is 0.53m.

    Reference
    Related
    Cited by
Get Citation

XI Xiaohuan, WANG Zijia, WANG Cheng. Bathymetric Extraction Method of Nearshore Based on ICESat-2/ATLAS Data[J].同济大学学报(自然科学版),2022,50(7):940~946

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:April 17,2022
  • Revised:
  • Adopted:
  • Online: July 22,2022
  • Published:
Article QR Code