Flexural Capacity of Lithium Slag Reinforced Concrete Beams Under Coupling Between Loading and Thermal-cold Cycling
CSTR:
Author:
Affiliation:

1.College of Civil Engineering, Xinjiang University, Urumqi 830017, China;2.Key Laboratory of Building Structure and Earthquake Resistance, Urumqi 830017, China

Clc Number:

TU528.01

  • Article
  • | |
  • Metrics
  • |
  • Reference [20]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    In order to study the damage mechanism and flexural performance of lithium slag concrete beams under coupling between loading and thermal-cold cycling,flexural loading tests were made on 4 groups of lithium slag concrete beams, which underwent the combined effect of a series of thermal-cold cycling (0, 100, 300) and static load levels (0, 0.2, 0.35). In addition,a constitutive model of lithium slag concrete was established on the basis of the axial compression test. Through the force analysis of the beam section, the calculation formula of the flexural bearing capacity of the lithium slag concrete beam was proposed. A comparative study was made of the calculation and experiment results, and the theoretical calculation results prove to be less than those of the experiments. From the prospect of the safety-reservation,the study provides a reference for the calculation of the flexural bearing capacity of lithium slag concrete rectangular cross-section beams in the areas of large temperature changes.

    Reference
    [1] WU J, LI H, WANG Z, et al. Transport model of chloride ions in concrete under loads and drying-wetting cycles[J]. Construction & Building Materials, 2016,112:733.
    [2] 秦晓川, 刘加平, 石亮, 等. 荷载与氯离子耦合作用下混凝土耐久性试验方法与装置的研究进展[J]. 材料导报, 2020,34(3):112.
    [3] 孙香花, 王佳林, 左晓宝, 等. 荷载-环境耦合作用下钢筋混凝土柱退化过程分析[J]. 南京理工大学学报, 2018,42(2):133.
    [4] SUMARAC D. Damage of plain concrete due to thermal incompatibility of its phases[J]. International Journal of Damage Mechanics, 1998,7(2):129.
    [5] 佘安明, 水中和, 王树和. 干燥大温差条件下混凝土界面过渡区的研究[J]. 建筑材料学报, 2008,11(4):485.
    [6] 李一, 张广泰, 田虎学, 等. 锂渣聚丙烯纤维混凝土基本力学性能试验[J]. 河南科技大学学报(自然科学版), 2016,37(4):60.
    [7] 曹大富, 富立志, 杨忠伟, 等. 冻融循环作用下混凝土受压本构特征研究[J]. 建筑材料学报, 2013,16(1):17.
    [8] MARSAVINA L, AUDENAERT K, SCHUTTER G D, et al. Experimental and numerical determination of the chloride penetration in cracked concrete[J]. Revue Fran§aise De Gnie Civil, 2016,20(1):231.
    [9] 毛婷厅. 新疆地区热冷循环作用下高强钢筋与纤维高强混凝土黏结性能研究[D]. 乌鲁木齐: 新疆大学, 2014.
    [10] WARD C, RATTANAWANGCHAROEN N, GHEORGHIU C. Impact resonance method for damage detection in carbon-fibre-reinforced polymer-strengthened reinforced concrete beams subjected to fatigue and thermal cycling[J]. Revue Canadienne De Génie Civil, 2008,35(11):1251.
    [11] 张广泰, 魏飞来, 陈柳灼, 等. 冷热循环-荷载耦合下锂渣混凝土梁变形性能试验研究[J]. 混凝土, 2020(3):24.
    [12] 张广泰, 陈柳灼, 陈彪汉,等. 加载装置及混凝土梁荷载与环境耦合试验装置[P]. 新疆:CN206002392U, 2017-03-08.
    [13] 外墙外保温工程技术标准:JGJ144-2019[S].北京: 中国建筑工业出版社, 2019.
    [14] 李景林, 张山清, 普宗朝, 等. 近50a新疆气温精细化时空变化分析[J]. 干旱区地理, 2013,36(2):228.
    [15] 中华人民共和国住房和城乡建设部,中华人民共和国国家质量监督检验检疫总局.混凝土结构试验方法标准: GB/T50152-2012[S]. 北京: 中国建筑工业出版社, 2012.
    [16] PRATT P L, WANG S D, PU X C, et al. Alkali-activated slag cement and concrete: a review of properties and problems[J]. Advances in Cement Research, 2015,27(7):93.
    [17] 张兰芳, 陈剑雄, 李世伟. 碱激发矿渣-锂渣混凝土试验研究[J]. 建筑材料学报, 2006,9(4):488.
    [18] 过镇海, 时旭东. 钢筋混凝土原理和分析[M]. 北京: 清华大学出版社, 2003.
    [19] 过镇海. 混凝土的强度和变形-试验基础和本构关系[M]. 北京: 清华大学出版社, 1997.
    [20] 关虓, 牛荻涛, 李强, 等. 冻融环境钢筋混凝土梁抗弯承载力研究[J]. 铁道学报, 2017,39(11):108.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

ZHANG Guangtai, LI Xuefan, LU Haibo, ZHANG Xiaoxu, SAIMAITI Adili. Flexural Capacity of Lithium Slag Reinforced Concrete Beams Under Coupling Between Loading and Thermal-cold Cycling[J].同济大学学报(自然科学版),2022,50(7):991~997

Copy
Share
Article Metrics
  • Abstract:160
  • PDF: 495
  • HTML: 74
  • Cited by: 0
History
  • Received:August 18,2021
  • Online: July 22,2022
Article QR Code