Earth Pressure Model of Structure Irregular Surfaces in Translational Motion in Sand
CSTR:
Author:
Affiliation:

1.Key Laboratory of Road and Traffic Engineering of the Ministry of Education, Tongii University, Shanghai 201804, China;2.Shanghai Key Laboratory of Rail Infrastructure Durability and System Safety, Tongii University, Shanghai 201804, China

Clc Number:

TU432

  • Article
  • | |
  • Metrics
  • |
  • Reference [26]
  • |
  • Related
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    To explore the influence of structure shape surface on soil-structure interaction, a series of laboratory model tests are conducted and the interaction between irregular structure surfaces and sand in the translational model is studied. The irregular structure surfaces include three typical structure surfaces, i.e., convex structure, plate structure, and concave structure. The contact pressure and soil displacement field in translation of structure are measured. The test results show that the structure shape has a noticeable influence on the maximum soil pressure, soil pressure distribution, and affected region of soil displacement. With the same relative displacement, the maximum soil pressure of the convex structure is the largest, followed by the plate structure and the concave structure. The soil pressure distributions of the convex structure and concave structure are the superposition of trapezoid and “oblique ellipse”, and the soil pressure distribution of plate structure is the superposition of trapezoid and sine function. The influence width of the earth surface of the convex structure is the largest, followed by the plate structure and the concave structure.

    Reference
    [1] 中华人民共和国住房和城乡建设部.城市地下空间开发利用“十三五”规划[R].北京:中华人民共和国住房和城乡建设部,2016.
    [2] 朱合华, 丁文其, 乔亚飞, 等. 简析我国城市地下空间开发利用的问题与挑战[J].地学前缘,2019,26(3):22.
    [3] DI Honggui, ZHOU Shunhua, XIAO Junhua, et al. Investigation of the long-term settlement of a cut-and-cover metro tunnel in a soft deposit[J]. Engineering Geology,2016, 204: 33.
    [4] GONG Quanmei, ZHAO Yu, ZHOU Junhong, et al. Uplift resistance and progressive failure mechanisms of metro shield tunnel in soft clay [J]. Tunnelling and Underground Space Technology, 2018, 82:222.
    [5] 冯凌云, 朱斌, 代加林, 等. 深海管道水平向管?土相互作用大变形连续极限分析[J].岩土力学,2019,40(12):4907.
    [6] CHALOULOS Y K , BOUCKOVALAS G D , ZERVOS S D , et al. Lateral soil–pipeline interaction in sand backfill: effect of trench dimensions[J]. Computers & Geotechnics, 2015, 69:442.
    [7] 宋享桦, 谭勇, 刘俊岩,等. 拉拔作用下锚杆复合土钉支护协同作用细观机制研究[J]. 岩石力学与工程学报, 2019, 38(3):591.
    [8] YUE Hongya, ZHUANG Peizhi, ZHANG Hongbo, et al. Failure and deformation mechanisms of vertical plate anchors subjected to lateral loading in sand[J]. International Journal of Geomechanics, 2020, 20(11): 04020210
    [9] 刘汉龙, 雍君, 丁选明, 等. 现浇X型混凝土桩的荷载传递机理初探[J].防灾减灾工程学报,2009,29(3):267.
    [10] 王新泉, 陈永辉, 张世民, 等. 反拱曲面X形异形桩产生附加应力计算方法研究[J].工程力学,2012,29(12):220.
    [11] 陈仁朋, 李君, 陈云敏, 等. 干砂盾构开挖面稳定性模型试验研究[J].岩土工程学报,2011,33(1):117.
    [12] 马忠武, 孙吉主, 刘佳佳. 基于透明土的隧道开挖面稳定性试验研究[J].岩土力学, 2020, 41(S2):1.
    [13] DONG Xiaoyu, ZHANG Wangcheng, SHIRI Hodjat, et al. Large deformation coupled analysis of embedded pipeline – soil lateral interaction[J]. Marine Structures, 2021, 78(11):102971.
    [14] MARTIN C M, RANDOLPH M F. Upper bound analysis of lateral pile capacity in cohesive soil[J]. Géotechnique, 2006, 56(2): 141.
    [15] RANDOLPH M F, WHITE D J. Upper-bound yield envelopes for pipelines at shallow embedment in clay[J]. Géotechnique,2008, 58(4): 297.
    [16] 孔纲强, 周立朵, 孙广超, 等.水平荷载下X形桩承载特性简化计算方法[J].铁道科学与工程学报,2017,14(10):2104.
    [17] ZHOU Hang, YUAN Jingrong, LIU Hanlong. A general analytical solution for lateral soil response of non-circular cross-sectional pile segment[J]. Applied Mathematical Modelling, 2019, 71:601.
    [18] 毕宗琦, 宫全美, 周顺华,等. 循环荷载下竖向土拱演化规律试验研究[J]. 岩土力学, 2020, 41(3):166.
    [19] ZHAO Yu , GONG Quanmei , WU Yaojie , et al. Progressive failure mechanism in granular materials subjected to an alternant active and passive trapdoor[J]. Transportation Geotechnics, 2021, 28: 100529.
    [20] 曾辉, 余尚江. 岩土应力传感器设计和使用原则[J]. 岩土工程学报, 1994, 16(1):93.
    [21] 李连祥, 符庆宏, 张海平. 微型土压力传感器标定方法研究[J]. 地震工程学报,2017,39(4):731.
    [22] WHITE D J, TAKE W A, BOLTON M D. Soil deformation measurement using particle image velocimetry (PIV) and photogrammetry[J]. Géotechnique, 2003, 53(7): 619.
    [23] TERZAGHI K. Theoretical soil mechanics[M]. New York: Wiley, 1943.
    [24] ANSARI Y, KOURETZIS G, SLOAN S W. Physical modelling of lateral sand–pipe interaction[J]. Géotechnique, 2019, 71(1):1.
    [25] 梅国雄, 宰金珉. 考虑位移影响的土压力近似计算方法[J].岩土力学,2001,32(1):83.
    [26] 杨泰华, 龚建伍, 汤斌,等. 不同变位模式下无黏性土非极限被动土压力计算分析[J].岩土力学,2013,34(10):2979.
    Related
    Cited by
Get Citation

LI Yitao, ZHOU Shunhua, ZHAO Yu, YAO Qiyu, TIAN Zhiyao. Earth Pressure Model of Structure Irregular Surfaces in Translational Motion in Sand[J].同济大学学报(自然科学版),2022,50(8):1163~1170

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:June 30,2021
  • Online: August 24,2022
Article QR Code