Strain Rate Effect and Acoustic Emission Characteristics of Carbonaceous Slates in Uniaxial Compression
CSTR:
Author:
Affiliation:

1.College of Civil Engineering, Tongji University, Shanghai 200092, China;2.Key Laboratory of Geotechnical and Underground Engineering of the Ministry of Education, Tongji University, Shanghai 200092, China

Clc Number:

TU45

  • Article
  • | |
  • Metrics
  • |
  • Reference [30]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    To investigate the strain rate effect and acoustic emission characteristics of carbonaceous slates, a series of uniaxial compression tests were conducted at four different quasi-static strain rates (8.50×10-6s-1, 1.70×10-5s-1, 1.70×10-4s-1, and 3.34×10-4s-1), and the acoustic emission signal was measured simultaneously. Based on the test results, the effects of strain rate on the stress-strain relationship, energy dissipation, and acoustic emission characteristics were analyzed, and the mechanism of these strain rate effects was explored. In addition, the closing stress σcc and the crack damage stress σcd were determined based on the evolution of dissipative energy density during loading; the closing stress σcc was defined as the starting point of the flat section of the dissipative energy curve, and the crack damage stress σcd was defined as the end point. The results show that in the quasi-static strain rate range, the elastic modulus and peak strength of carbonaceous slates first increase and then decrease with the strain rate, reaching their maximum values at the rate of 1.7×10-4s-1. The ratio of closure stress, crack initiation stress, and crack damage stress to the peak stress were about 0.37, 0.55, and 0.74, respectively, which do not change with the strain rate. The strain rate also has a significant impact on the acoustic emission signal. With the increase of strain rate, the proportion of main frequency in the range of 0~50 kHz increases and that in the range of 100~250 kHz gradually decreases. The failure mode also gradually changes from tensile failure to shear failure.

    Reference
    [1] 陶志刚, 罗森林, 李梦楠, 等. 层状板岩隧道大变形控制参数优化数值模拟分析及现场试验[J]. 岩石力学与工程学报, 2020, 39(3): 491.
    [2] 陈宗基. 地下巷道长期稳定性的力学问题[J]. 岩石力学与工程学报, 1982(1): 1.
    [3] 田云, 陈卫忠, 田洪铭, 等.考虑软岩强度时效弱化的缓冲层让压支护设计研究[J]. 岩土力学, 2020, 41(S1): 237.
    [4] 刘俊新, 张可, 刘伟, 等.不同围压及应变速率下页岩变形及破损特性试验研究[J]. 岩土力学, 2017, 38(S1): 43.
    [5] 刘晓辉, 郝齐钧, 吴世勇, 等. 准静态应变率下的煤岩非线性力学特性[J]. 煤炭学报, 2019,44(5): 1437.
    [6] 刘晓辉, 郝齐钧, 胡安奎, 等. 准静态应变率下单轴煤岩特征应力确定方法研究[J]. 岩石力学与工程学报, 2020, 39(10): 2038.
    [7] 李海涛. 加载速率效应影响下煤的冲击特性评价方法及应用[D]. 北京:中国矿业大学(北京),2014.
    [8] 王晓东, 王坤. 加载速率效应对花岗岩破裂的力学性能及能量转化机制的影响[J]. 煤矿安全, 2020, 51(4): 31.
    [9] 杨仕教, 曾晟, 王和龙.加载速率对石灰岩力学效应的试验研究[J]. 岩土工程学报, 2005(7): 786.
    [10] 尹小涛, 葛修润, 李春光, 等.加载速率对岩石材料力学行为的影响[J]. 岩石力学与工程学报, 2010, 29(S1): 2610.
    [11] LIU X, ZHOU L, LI X, et al. Experimental study on the effect of strain rate on rock acoustic emission characteristics[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 133: 104420.
    [12] LI H R, QIAO Y F, SHEN X R, et al. Effect of water on mechanical behavior and acoustic emission response of sandstone during loading process: phenomenon and mechanism[J]. Engineering Geology, 2021, 294:106386.
    [13] 姜德义, 陈结, 任松, 等. 盐岩单轴应变率效应与声发射特征试验研究[J]. 岩石力学与工程学报, 2012, 31(2): 326.
    [14] 杨文君, 谢强, 班宇鑫, 等. 变加载速率砂岩声发射特征及损伤本构模型[J]. 地下空间与工程学报, 2021, 17(1): 71.
    [15] 刘运思, 傅鹤林, 伍毅敏, 等.横观各向同性岩石弹性参数及抗压强度的试验研究[J]. 中南大学学报(自然科学版), 2013, 44(8): 3398.
    [16] 王永刚. 炭质板岩横观各向同性蠕变模型与应用研究[D]. 上海:同济大学,2015.
    [17] 李二强, 张洪昌, 张龙飞, 等. 不同层理倾角炭质板岩巴西劈裂试验及数值研究[J]. 岩土力学, 2020, 41(9): 2869.
    [18] 中华人民共和国水利部. 水利水电工程岩石试验规程: SL 264-2001 [S]. 北京: 中国水利水电出版社, 2001.
    [19] 尤明庆, 华安增. 岩石试样破坏过程的能量分析[J]. 岩石力学与工程学报, 2002(6): 778.
    [20] 谢和平, 鞠杨, 黎立云. 基于能量耗散与释放原理的岩石强度与整体破坏准则[J]. 岩石力学与工程学报, 2005, 24(17): 3003.
    [21] 柳万里, 晏鄂川, 戴航, 等. 巴东组泥岩水作用的特征强度及其能量演化规律研究[J]. 岩石力学与工程学报, 2020, 39(2): 311.
    [22] CARPINTERI A, CORRADO M, LACIDOGNA G. Heterogeneous materials in compression: Correlations between absorbed, released and acoustic emission energies[J]. Engineering Failure Analysis, 2013, 33:236.
    [23] KORDATOS E Z, AGGELIS D G, MATIKAS T E. Monitoring mechanical damage in structural materials using complimentary NDE techniques based on thermography and acoustic emission[J]. Composites Part B Engineering, 2012, 43(6):2676
    [24] 周辉, 孟凡震, 卢景景, 等. 硬岩裂纹起裂强度和损伤强度取值方法探讨[J]. 岩土力学, 2014, 35(4): 913.
    [25] EBERHARDT E D, STEAD D, STIMPSON B, et al. Identifying crack initiation and propagation thresholds in brittle rock[J]. Canadian Geotechnical Journal, 1998, 35(2): 222.
    [26] MARTIN C D. The strength of massive Lac du Bonnet granite around underground openings [D]. Winnipeg: Department of Civil and Geological Engineering University of Manitoba, 1993.
    [27] MARTIN C D,CHANDLER N A. The progressive fracture of Lac du Bonnet granite[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1994, 31(6): 643.
    [28] 侯志强, 王宇, 刘冬桥, 等. 层状大理岩破裂过程力学特性与能量演化各向异性研究[J]. 采矿与安全工程学报, 2019, 36(4): 794.
    [29] 赵奎, 冉珊瑚, 曾鹏, 等. 含水率对红砂岩特征应力及声发射特性的影响[J]. 岩土力学, 2021(4): 1.
    [30] ZHAO X, CAI M, WANG J. Damage stress and acoustic emission characteristics of the Beishan granite[J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 64: 258.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

XIAO Yingming, QIAO Yafei, LI Hongru, HE Manchao. Strain Rate Effect and Acoustic Emission Characteristics of Carbonaceous Slates in Uniaxial Compression[J].同济大学学报(自然科学版),2022,50(9):1276~1285

Copy
Share
Article Metrics
  • Abstract:358
  • PDF: 663
  • HTML: 79
  • Cited by: 0
History
  • Received:August 04,2021
  • Online: September 29,2022
Article QR Code