Joint Inversion of Two-Dimensional Direct Current Resistivity and Radio- Magnetotelluric Data Based on Fuzzy C-Means Clustering Model Constraint
CSTR:
Author:
Affiliation:

1.State Key Laboratory of Nuclear Resources and Environment, Nanchang 330013, China;2.School of Geophysics and Measurement-Control Technology, East China University of Technology, Nanchang 330013, China

Clc Number:

P318

  • Article
  • | |
  • Metrics
  • |
  • Reference [46]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    In combination with the advantages of the direct current resistivity (DCR) and radio-magnetotelluric (RMT) methods, a joint inversion of two-dimensional DCR and RMT data was performed in this paper. A balancing operator was proposed to adjust the weightings of the two types of data in the joint inversion. To obtain a reliable inverted resistivity model, a fuzzy C-means (FCM) clustering was added to the regularization objective function based on classical minimum structure constraint. In the inversion, a strategy of increasing the weight of the FCM part with the inversion iteration based on root-mean-square error calculation was applied. The single inversion and joint inversion of the DCR and RMT data were compared, and the advantage of joint inversion was summarized. The synthetic tests show that the recovered resistivity model with joint inversion is closer to the true subsurface structure than that with single inversion. Moreover, the FCM clustering constraint improves the accuracy of the inverted model.

    Reference
    [1] MAILLET R. The fundamental equations of electrical prospecting[J]. Geophysics, 1947, 12(4): 529. DOI:10.1190/1.1437342.
    [2] COGGON J H. Electromagnetic and electrical modeling by the finite element method[J]. Geophysics, 1971, 36(1): 132. DOI:10.1190/1.1440151.
    [3] OLDENBURG D W. The interpretation of direct current resistivity measurements[J]. Geophysics, 1978, 43(3): 610. DOI:10.1190/1.1440840.
    [4] PARK S K, VAN G P. Inversion of pole‐pole data for 3-D resistivity structure beneath arrays of electrodes[J]. Geophysics, 1991, 56(7): 951. DOI:10.1190/1.1443128.
    [5] ZHOU B, GREENHALGH S A. Rapid 2-D/3-D crosshole resistivity imaging using the analytic sensitivity function[J]. Geophysics, 2002, 67(3): 755. DOI:10.1190/1.1484518.
    [6] LOKE M H, ACWORTH I, DAHLIN T. A comparison of smooth and blocky inversion methods in 2D electrical imaging surveys[J]. Exploration Geophysics, 2003, 34(3): 182. DOI:10.1071/eg03182.
    [7] PLATTNER A, MAURER H R, VORLOEPER J, et al. 3-D electrical resistivity tomography using adaptive wavelet parameter grids[J]. Geophysics Journal International, 2012, 189(1): 317. DOI:10.1111/j.1365-246x.2012.05374.x.
    [8] 吴小平, 刘洋, 王威. 基于非结构网格的电阻率三维带地形反演[J]. 地球物理学报, 2015, 58(8): 2706. DOI: 10.6038/cjg20150808.WU Xiaoping, LIU Yang, WANG Wei. 3D resistivity inversion incorporating topography based on unstructured meshes[J]. Chinese Journal Geophysics, 2015, 58(8): 2706. DOI: 10.6038/cjg20150808.
    [9] TURBERG P, MIILLER I, FLURY F. Hydrogeological investigation of porous environments by radio magnetotelluric-resistivity (RMT-R 12~240 kHz)[J]. Journal of Applied Geophysics, 1994, 31(1/4): 133. DOI: 10.1016/0926-9851(94)90052-3.
    [10] PEDERSEN L, BASTANI M, DYNESIUS L. Groundwater exploration using combined controlled-source and radio-magnetotelluric techniques[J]. Geophysics, 2005, 70(1): 8. DOI: 10.1190/1.1852774.
    [11] ISMAIL N, SCHWARZ G, PEDERSEN L B. Investigation of groundwater resources using controlled-source radio magnetotellurics (CSRMT) in glacial deposits in Heby, Sweden[J]. Journal of Applied Geophysics, 2011, 73(1): 74, Doi:10.1016/j.jappgeo.2010.11.008.
    [12] TEZKAN B, ZACHER G, DAUTEL S. On the application of radio magnetotellurics to waste site exploration in Germany[C]//Symposium on the Application of Geophysics to Engineering and Environmental Problems. 1997: 825-833. DOI: 10.3997/2214-4609-pdb.204.1997_085.
    [13] TEZKAN B, RECHER S, H?NIG M, et al. Joint application of radio magnetotellurics(RMT) and induced polarization(IP) to a waste site exploration[C]//Symposium on the Application of Geophysics to Engineering and Environmental Problems, 2001. DOI: 10.4133/1.2922925.
    [14] TEZKAN B, GEORGESCU P, FAUZI U, et al. A radio-magnetotelluric survey on an oil-contaminated area near the Brazi Refinery, Romania[J]. Geophysical Prospecting, 2005, 53(3): 311. DOI: 10.1111/j.1365-2478.2005.00475.x.
    [15] SHAN C, BASTANI M, MALEHMIR A, et al. Integrated 2D modeling and interpretation of geophysical and geotechnical data to delineate quick clays at a landslide site in southwest Sweden[J]. Geophysics, 2014, 79(4): 61. DOI: 10.1190/GEO2013-0201.1.
    [16] SHAN C, BASTANI M, MALEHMIR A, et al. Integration of controlled-source and radio magnetotellurics, electric resistivity tomography , and reflection seismics to delineate 3D structures of a quick-clay landslide site in southwest of Sweden[J]. Geophysics, 2016, 81(1): 13. DOI: 10.1190/GEO2014-0386.1.
    [17] WANG S, MALEHMIR A, BASTANI M. Geophysical characterization of areas prone to quick-clay landslides using radio-magnetotelluric and seismic methods[J]. Tectonophysics, 2016, 677/678: 248. DOI: 10.1016/j.tecto.2016.04.020.
    [18] VOZOFF K, JUPP D L B. Joint inversion of geophysical data[J]. Geophysical Journal International, 1975, 42(3): 977. DOI:10.1111/j.1365-246x.1975.tb06462.x.
    [19] JUPP D L B, VOZOFF K. Resolving anisotropy in layered media by joint inversion[J]. Geophysics Prospecting, 1977, 25(3): 460. DOI:10.1111/J.1365-2478.1977.TB01181.X.
    [20] LINES L R, SCHULTZ A K, TREITEL S. Cooperative inversion of geophysical data[J]. Geophysics, 1988, 53(1): 8. DOI:10.1190/1.1442403.
    [21] HABER E, OLDENBURG D. Joint inversion: a structural approach[J]. Inverse Problems, 1997, 13(1): 63. DOI: 10.1088/0266-5611/13/1/006.
    [22] BASTANI M, HüBERT J, KALSCHEUER T, et al. 2D joint inversion of RMT and ERT data versus individual 3D inversion of full tensor RMT data: an example from Trecate site in Italy[J]. Geophysics, 2012, 77(4): WB233. DOI:10.1190/GEO2011-0525.1.
    [23] YOGESHWAR P, TEZKAN B, ISRAIL M, et al. Groundwater contamination in the Roorkee area, India: 2D joint inversion of radio magnetotelluric and direct current resistivity data[J]. Journal of Applied Geophysics, 2012, 76: 127. DOI: 10.1016/j.jappgeo.2011.11.001.
    [24] WANG S, KALSCHEUER T, BASTIANI M, et al. Joint inversion of lake-floor electrical resistivity tomography and boat-towed radio-magnetotelluric data illustrated on synthetic data and an application from the ?sp? Hard Rock Laboratory site, Sweden[J]. Geophysical Journal International, 2018, 213(1): 511. DOI: 10.1093/gji/ggx414.
    [25] CANDANSAYAR M E, TEZKAN B. Two-dimensional joint inversion of radio-magnetotelluric and direct current resistivity data[J]. Geophysical Prospecting, 2008, 56(5): 737. DOI:10.1111/j.1365-2478.2008.00695.x.
    [26] 原源, 汤井田, 任政勇, 等. 基于非结构化网格的任意复杂2D RMT有限元模拟[J]. 地球物理学报, 2015, 58(12): 4686. DOI: 10.6038/cjg20151229.YUAN Yuan, TANG Jintian, REN Zhengyong, et al. Two-dimentional complicated radio-magnetotelluric finite-modeling using unstructured grids[J]. Chinese Journal of Geophysics, 2015, 58(12): 4686. DOI: 10.6038/cjg20151229.
    [27] ?ZYILDIRIM ?, DEMIRCI ?, GüNDO?DU N Y, et al. Two dimensional joint inversion of direct current resistivity and radio-magnetotelluric data based on unstructured mesh[J]. Journal of Applied Geophysics, 2020, 172: 103885. DOI: 10.1016/j.jappgeo.2019.103885.
    [28] DEMIRCI ?, CANDANSAYAR M E, VAFIDIS A, et al. Two dimensional joint inversion of direct current resistivity, radio-magnetotelluric and seismic refraction data: an application from Bafra Plain, Turkey[J]. Journal of Applied Geophysics, 2017, 139: 316. DOI: 10.1016/J.JAPPGEO.2017.03.002.
    [29] BEZDEK J C. Pattern recognition with fuzzy objective function algorithms[M]. New York: Plenum Press, 1981.
    [30] HOPPNER F, KLAWONN F, KRUSE R, et al. Fuzzy cluster analysis: methods for classification, data analysis and image recognition[J]. The Journal of the Operational Research Society, 2000, 51(6): 769. DOI:10.2307/254022.
    [31] PAASCHE H, TRONICKE J, HOLLIGER K, et al. Integration of diverse physical-property models: subsurface zonation and petrophysical parameter estimation based on fuzzy C-means cluster analyses[J]. Geophysics, 2006, 71(3):33. DOI: 10.1190/1.2192927.
    [32] CARTER A, LELIèVRE P G, FARQUHARSON C G. A study of fuzzy C-means coupling for joint inversion, using seismic tomography and gravity data test scenarios[J]. Geophysics, 2015, 80(1): W1. DOI: 10.1190/GEO2014-0056.1.
    [33] SUN J, LI Y. Multidomain petrophysically constrained inversion and geology differentiation using guided fuzzy C-means clustering[J]. Geophysics, 2015, 80(4): ID1. DOI: 10.1190/GEO2014-0049.
    [34] SUN J, LI Y. Joint inversion of multiple geophysical data using guided fuzzy C-means clustering[J]. Geophysics, 2016, 81(3): ID37. DOI: 10.1190/GEO2015-0457.1.
    [35] LI Y, SUN J. 3D magnetization inversion using fuzzy C-means clustering with application to geology differentiation[J]. Geophysics, 2016, 81(5): J61. DOI: 10.1190/GEO2015-0636.1.
    [36] ISHIZU K, GOTO T, VACHIRATIENCHAI C, et al. Two-dimensional inversion of marine DC resistivity survey using fuzzy C-means clustering constraint[C]//SEG 2017. 2017: 1204–1208, DOI:10.1190/SEGAM2017-17729696.1.
    [37] MAAG E, LI Y. Discrete-valued inversion of IP data using guided FCM clustering[C]//2018 SEG International Exposition and Annual Meeting. 2018: 1903–1907. DOI: 10.1190/segam2018-2998500.1.
    [38] MAAG E, LI Y. Discrete-valued gravity inversion using the guided fuzzy c-means clustering technique[J]. Geophysics, 2018, 83(4): G59. DOI: 10.1190/geo2017-0594.1.
    [39] YANG B, XU K, LIU Z. Fuzzy constrained Inversion of magnetotelluric data Using guided fuzzy C-means clustering[J]. Surveys in Geophysics, 2021, 42(1): 399. DOI:10.1007/s10712-020-09628-y.
    [40] SUN J, LI Y. Advances in 3D magnetization clustering inversion: numerical strategies and uncertainty analysis[C]//GEM 2019 Xi’an. International Workshop on Gravity, Electrical & Magnetic Methods and Their Applications. 2019. DOI: 10.1190/GEM2019-118.1.
    [41] MAAG E, LI Y. Parameter selection workflow for a discrete-valued gravity inversion with guided fuzzy C-means clustering[C]//GEM 2019. DOI: 10.1190/GEM2019-113.1.
    [42] OLDENBURG D W, LI Y. Inversion of induced polarization data[J]. Geophysics, 1994, 59(9): 1327. DOI:10.1190/1.1443692.
    [43] ZHDANOV M S. Geophysical inverse theory and regularization problems[M]. Amsterdam: Elsevier, 2002.
    [44] LELIEVRE P G, FARQUHARSON C G. Gradient and smoothness regularization operators for geophysical inversion on unstructured meshes[J]. Geophysical Journal International, 2013, 195(1): 330. DOI: 10.1093/gji/ggt255.
    [45] RODI W, MACKIE R L. Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion[J]. Geophysics, 2001, 66(1): 174. DOI:10.1190/1.1444893.
    [46] 周勇,张志勇,张大洲, 等.自适应网格直流电阻率三维反演[J]. 石油地球物理勘探, 2019, 54(5): 1174. DOI: 10.13810/j.cnki.issn.10000-7210.2019.05.026.ZHOU Yong, ZHANG Zhiyong , ZHANG Dazhou, et al. Three-dimensional DC inversion based on self-adaption meshes[J]. Oil Geophysical Prospecting, 2019, 54(5): 1174. DOI: 10.13810/j.cnki.issn.10000-7210.2019.05.026.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

ZHANG Zhiyong, YI Ke, XIE Shangping, ZHOU Feng, GUO Yihao, CHENG San. Joint Inversion of Two-Dimensional Direct Current Resistivity and Radio- Magnetotelluric Data Based on Fuzzy C-Means Clustering Model Constraint[J].同济大学学报(自然科学版),2023,51(1):135~144

Copy
Share
Article Metrics
  • Abstract:297
  • PDF: 719
  • HTML: 182
  • Cited by: 0
History
  • Received:September 08,2021
  • Online: February 02,2023
Article QR Code