Research Progress of Smoothed Particle Hydrodynamics on Water-gas Two-phase Flow
CSTR:
Author:
Affiliation:

1.Key Laboratory of Coastal Disaster and Protection(Hohai University) of the Ministry of Education, Hohai University, Nanjing 210024, China;2.College of Civil Engineering, Tongji University, Shanghai 200092, China;3.School of Marine Engineering and Technology, Sun Yat-Sen University, Zhuhai 519082, China

Clc Number:

O359

  • Article
  • | |
  • Metrics
  • |
  • Reference [71]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    From the aspects of state equation, continuity equation, momentum equation and other numerical techniques,the numerical techniques and recent progress of smoothed particle hydrodynamics (SPH) on water-gas two-phase flow are reviewed. Discussions on the techniques are also presented. Finally, future research prospects are put forward.

    Reference
    [1] VIOLEAU D, ROGERS B D. Smoothed particle hydrodynamics (SPH) for free-surface flows: past, present and future[J]. Journal of Hydraulic Research, 2016, 54(1): 1.
    [2] LIU M B, LIU G R. Smoothed particle hydrodynamics (SPH): an overview and recent developments[J]. Archives of Computational Methods in Engineering, 2010, 17: 25.
    [3] LUO M, KHAYYER A, LIN P Z. Particle methods in ocean and coastal engineering[J]. Applied Ocean Research, 2021, 114: 102734.
    [4] YE Ting, PAN Dingyi, HUANG Can, et al. Smoothed particle hydrodynamics (SPH) for complex fluid flows: recent developments in methodology and applications[J]. Physics of Fluids, 2019, 31(1): 011301.
    [5] ZHENG Xing, MA Qingwei, DUAN Wenyang. Comparative study of different SPH schemes on simulating violent water wave impact flows[J]. China Ocean Engineering, 2014, 28(6): 791.
    [6] 张驰, 张雨新, 万德成. SPH方法和MPS方法模拟溃坝问题的比较分析[J]. 水动力学研究与进展: A辑, 2011, 26(6): 736.ZHANG Chi, ZHANG Yuxin, WAN Decheng. Comparative study of SPH and MPS methods for numerical simulations of dam breaking problems[J]. Chinese Journal of Hydrodynamics: A, 2011, 26(6): 736.
    [7] COLAGROSSI A, LANDRINI M. Numerical simulation of interfacial flows by smoothed particle hydrodynamics[J]. Journal of Computational Physics, 2003, 191(2): 448.
    [8] HAMMANI I, MARRONE S, COLAGROSSI A, et al. Detailed study on the extension of the δ-SPH model to multi-phase flow[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 368: 113189.
    [9] GRENIER N, ANTUONO M, COLAGROSSI A, et al. An Hamiltonian interface SPH formulation for multi-fluid and free surface flows[J]. Journal of Computational Physics, 2009, 228: 8380.
    [10] ZAINALI A, TOFIGHI N, SHADLOO M S, et al. Numerical investigation of Newtonian and non-Newtonian multiphase flows using ISPH method[J]. Computer Methods in Applied Mechanics and Engineering, 2013, 254: 99.
    [11] SZEWC K, POZORSKI J, MINIER J P. Simulations of single bubbles rising through viscous liquids using smoothed particle hydrodynamics[J]. International Journal of Multiphase Flow, 2013, 50: 98.
    [12] ZHANG Aman, SUN Pengnan, MING Furen. An SPH modeling of bubble rising and coalescing in three dimensions[J]. Computer Methods in Applied Mechanics and Engineering, 2015, 294: 189.
    [13] CHEN Z, ZONG Z, LIU M B, et al. An SPH model for multiphase flows with complex interfaces and large density differences[J]. Journal of Computational Physics, 2015, 283: 169.
    [14] MOKOS A, ROGERS B D, STANSBY P. K. A multi-phase particle shifting algorithm for SPH simulations of violent hydrodynamics with a large number of particles[J]. Journal of Hydraulic Research, 2017, 55(2): 143.
    [15] REZAVAND M, ZHANG Chi, HU Xiangyu. A weakly compressible SPH method for violent multi-phase flows with high density ratio[J]. Journal of Computational Physics, 2020, 402: 109092.
    [16] MONAGHAN J J, RAFIEE A. A simple SPH algorithm for multi-fluid flow with high density ratios[J]. International Journal for Numerical Methods in Fluids, 2013, 71(5): 537.
    [17] LIND S J, STANSBY P K, ROGERS B D. Incompressible-compressible flows with a transient discontinuous interface using smoothed particle hydrodynamics[J]. Journal of Computational Physics, 2016, 309: 129.
    [18] 王平平, 张阿漫, 孟子飞. 一种改进的适用于多相流SPH模拟的粒子位移修正算法[J]. 中国科学, 2020, 65(8): 729.WANG Pingping, ZHANG Aman, MENG Zifei. An improved particle shifting algorithm for multiphase flows in SPH method[J]. Science China, 2020, 65(8): 729.
    [19] ZHOU L, CAI Z W, ZONG Z, et al. An SPH pressure correction algorithm for multiphase flows with large density ratio[J]. International Journal for Numerical Methods in Engineering, 2016, 81: 765.
    [20] MONAGHAN J J. Simulating free surface flows with SPH[J]. Journal of Computational Physics, 1994, 110(2): 399.
    [21] MORRIS J P, FOX P J, ZHU Y. Modeling low Reynolds number incompressible flows using SPH[J]. Journal of Computational Physics, 1997, 136(1): 214.
    [22] MARRONE S, COLAGROSSI A, ANTUONO M, et al. An accurate SPH modelling of viscous flows around bodies at low and moderate Reynolds numbers[J]. Journal of Computational Physics, 2013, 245: 456.
    [23] MONAGHAN J J. SPH without a tensile instability[J]. Journal of Computational Physics, 2000, 159(2): 290.
    [24] ADAMI S, HU X Y, ADAMS N A. A new surface-tension formulation for multi-phase SPH using a reproducing divergence approximation[J]. Journal of Computational Physics, 2010, 229: 5011.
    [25] SHADLOO M S, ZAINALI A, YILDIZ M, et al. A robust weakly compressible SPH method and its comparison with an incompressible SPH[J]. International Journal for Numerical Methods in Engineering, 2012, 89(8): 939.
    [26] YANG Qiuzu, XU Fei, YANG Yang, et al. Two-phase SPH model based on an improved Riemann solver for water entry problems[J]. Ocean Engineering, 2020, 199: 107039.
    [27] SUN Pengnan, TOUZé D L, ZHANG Aman. Study of a complex fluid-structure dam-breaking benchmark problem using a multi-phase SPH method with APR[J]. Engineering Analysis with Boundary Elements, 2019, 104: 240.
    [28] MING Furen, SUN Pengnan, ZHANG Aman. Numerical investigation of rising bubbles bursting at a free surface through a multiphase SPH model[J]. Meccanica, 2017, 52(11/12): 2665.
    [29] SUN Pengnan, COLAGROSSI A, MARRONE S, et al. Multi-resolution delta-plus-SPH with tensile instability control: towards high Reynolds number flows[J]. Computer Physics Communications, 2018, 224: 63.
    [30] SUN Pengnan, TOUZé D L, OGER G, et al. An accurate SPH volume adaptive scheme for modeling strongly-compressible multiphase flows, part 1: numerical scheme and validations with basic 1D and 2D benchmarks[J]. Journal of Computational Physics, 2021, 426: 109937.
    [31] SUN Pengnan, TOUZé D L, OGER G, et al. An accurate SPH volume adaptive scheme for modeling strongly-compressible multiphase flows, part 2: extension of the scheme to cylindrical coordinates and simulations of 3D axisymmetric problems with experimental validations[J]. Journal of Computational Physics, 2021, 426: 109936.
    [32] 孙鹏楠. 物体与自由液面耦合作用的光滑粒子流体动力学方法研究[D]. 哈尔滨:哈尔滨工程大学, 2018.SUN Pengnan. Study on SPH method for the simulation of object-free surface interactions[D]. Harbin: Harbin Engineering University, 2018.
    [33] NUGENT S, POSCH H A. Liquid drops and surface tension with smoothed particle applied mechanics[J]. Physical Review E, 2000, 62(4): 4968.
    [34] WAN Hang, LI Ran, PU Xunchi, et al. Numerical simulation for the air entrainment of aerated flow with an improved multiphase SPH model[J]. International Journal of Computational Fluid Dynamics, 2018, 31(4): 1.
    [35] 韩旭, 杨刚, 龙述尧. SPH方法在两相流动问题中的典型应用[J]. 湖南大学学报(自然科学版), 2007, 34(1): 28.HAN Xu, YANG Gang, LONG Shuyao. Typical application of SPH method to two-phase flow problems[J]. Journal of Hunan University (Natural Sciences), 2007, 34(1): 28.
    [36] COLE R H. Underwater explosions[M]. Princeton: Princeton University Press, 1948.
    [37] MENIKOFF R, PLOHR B J. The Riemann problem for fluid flow of real materials[J]. Review of Modern Physics, 1989, 61: 75.
    [38] SAUREL R, ABGRALL R. A simple method for compressible multifluid flows[J]. SIAM Journal on Scientific Computing, 1999, 21(3): 1115.
    [39] NOURGALIEV R R, DINH T N, THEOFANOUS T G. Adaptive characteristics-based matching for compressible multifluid dynamics[J]. Journal of Computational Physics, 2006, 213: 500.
    [40] 宗智, 邹丽, 刘谋斌, 等. 模拟二维水下爆炸问题的光滑粒子(SPH)方法[J]. 水动力学研究与进展: A 辑, 2007,22(1): 61.ZONG Zhi, ZOU Li, LIU Moubin, et al. SPH simulation of two-dimensional underwater explosion[J]. Chinese Journal of Hydrodynamics: A, 2007, 22(1): 61.
    [41] LIU M B, LIU G R, LAM K Y, et al. Smoothed particle hydrodynamics for numerical simulation of underwater explosion[J]. Computational Mechanics, 2003, 30(2): 106.
    [42] DOBRATZ B M, CRAWFORD P C. LLNL explosives handbook[R]. Livermore: Lawrence Livermore National Laboratory, 1981.
    [43] ZHANG Aman, YANG Wenshan, HUANG Chao, et al. Numerical simulation of column charge underwater explosion based on SPH and BEM combination[J]. Computers & Fluids, 2013, 71: 169.
    [44] CAMPANA E F, CARCATERRA A, CIAPPI E, et al. Some insights into slamming forces: compressible and incompressible phases[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2000, 214(6): 881.
    [45] CARCATERRA A, CIAPPI E, IAFRATI A, et al. Shock spectral analysis of elastic systems impacting on the water surface[J]. Journal of Sound and Vibration, 2000, 229(3): 579.
    [46] MARRONE S, COLAGROSSI A, PARK J S, et al. Challenges on the numerical prediction of slamming loads on LNG tank insulation panels[J]. Ocean Engineering, 2017, 141: 512.
    [47] HU X Y, ADAMS N A. A multi-phase SPH method for macroscopic and mesoscopic flows[J]. Journal of Computational Physics, 2006, 213(2): 844.
    [48] MOLTENI D, COLAGROSSI A. A simple procedure to improve the pressure evaluation in hydrodynamic context using the SPH[J]. Computer Physics Communications, 2009, 180(6): 861.
    [49] ANTUONO M, COLAGROSSI A, MARRONE S, et al. Free surface flows solved by means of SPH schemes with numerical diffusive terms[J]. Computer Physics Communications, 2010, 181(3): 532.
    [50] MARRONE S, ANTUONO M, COLAGROSSI A, et al. δ-SPH model for simulating violent impact flows[J]. Computer Methods in Applied Mechanics and Engineering, 2011, 200(13/16): 1526.
    [51] DE CHOWDHURY S, SANNASIRAJ S A. Numerical simulation of 2D sloshing waves using SPH with diffusive terms[J]. Applied Ocean Research, 2014, 47: 219.
    [52] MERINGOLO D D, ARISTODEMO F, VELTRI P. SPH numerical modeling of wave-perforated breakwater interaction[J]. Coastal Engineering, 2015, 101: 48.
    [53] GONG Kai, SHAO Songdong, LIU Hua, et al. Two-phase SPH simulation of fluid-structure interactions[J]. Journal of Fluids and Structures, 2016, 65: 155.
    [54] HU X Y, ADAMS N A. An incompressible multi-phase SPH method[J]. Journal of Computational Physics, 2007, 227(1): 264.
    [55] 徐丞君, 徐胜利, 刘庆源. 修正压力梯度粒子近似SPH方法计算大密度比界面流动[J]. 应用数学和力学, 2019, 40(1): 20.XU Chengjun, XU Shengli, LIU Qingyuan. Modified particle approximation to pressure gradients in the SPH algorithm for interfacial flows with high density ratios[J]. Applied Mathematics and Mechanics, 2019, 40(1): 20.
    [56] TARTAKOVSKY A M, FERRIS K F, MEAKIN P. Lagrangian particle model for multiphase flows[J]. Computer Physics Communications, 2009, 180(10): 1874.
    [57] BRACKBILL J U, KOTHE D B, ZEMACH C. A continuum method for modeling surface tension[J]. Journal of Computational Physics, 1992, 100(2): 335.
    [58] LAFAURIE B, NARDONE C, SCARDOVELLI R, et al. Modelling merging and fragmentation in multiphase flows with SURFER[J]. Journal of Computational Physics, 1994, 113(1): 134.
    [59] MORRIS J P. Simulating surface tension with smoothed particle hydrodynamics[J]. International Journal for Numerical Methods in Fluids, 2000, 33(3): 333.
    [60] 文潇, 万德成. 用MPS方法数值模拟含多相流体的液舱晃荡[C]//第十九届中国海洋(岸)工程学术讨论会论文集. 重庆: 中国海洋工程学会, 2019: 157-163.WEN Xiao, WAN Decheng. Numerical simulation of tank sloshing in multiphase fluid with MPS method[C]//Proceedings of the 19th Chinese Ocean(Coast) Engineering Symposium. Chongqing: Chinese Ocean Engineering Society, 2019: 157-163.
    [61] WEN Xiao, ZHAO Weiwen, WAN Decheng. A multiphase MPS method for bubbly flows with complex interfaces[J]. Ocean Engineering, 2021, 238: 109743.
    [62] KHANPOUR M, ZARRATI A R, KOLAHDOOZAN M, et al. Numerical modeling of free surface flow in hydraulic structures using smoothed particle hydrodynamics[J]. Applied Mathematical Modelling, 2016, 40: 9821.
    [63] PADOVA D D, MOSSA M, SIBILLA S. SPH numerical investigation of characteristics of hydraulic jumps[J]. Environmental Fluid Mechanics, 2018, 18(4): 849.
    [64] 沈雁鸣, 陈坚强. SPH方法对水气二相流自由界面运动的追踪模拟[J]. 空气动力学学报, 2012, 30(2): 157.SHEN Yanming, CHEN Jianqiang. Numerical tracking of interface in multiphase flows with smoothed particle hydrodynamics[J]. Acta Aerodynamica Sinica, 2012, 30(2): 157.
    [65] SHAHRIARI S, HASSAN I G, KADEM L. Modeling unsteady flow characteristics using smoothed particle hydrodynamics[J]. Applied Mathematical Modelling, 2013, 37(3): 1431.
    [66] XU R, STANSBY P, LAURENCE D. Accuracy and stability in incompressible SPH (ISPH) based on the projection method and a new approach[J]. Journal of Computational Physics, 2009, 228(18): 6703.
    [67] LIND S J, XU R, STANSBY P K, et al. Incompressible smoothed particle hydrodynamics for free-surface flows: a generalised diffusion-based algorithm for stability and validations for impulsive flows and propagating waves[J]. Journal of Computational Physics, 2012, 231(4): 1499
    [68] SUN P N, COLAGROSSI A, MARRONE S, et al. The δplus-SPH model: simple procedures for a further improvement of the SPH scheme[J]. Computer Methods in Applied Mechanics and Engineering, 2017, 315: 25.
    [69] ANTUONO M, SUN P N, MARRONE S, et al. The δ-ALE-SPH model: an arbitrary Lagrangian-Eulerian framework for the δ-SPH model with particle shifting technique[J]. Computers & Fluids, 2021, 216: 104806.
    [70] INUTSUKA S. Godunov-type SPH[J]. Memorie Della Societa Astronomica Italiana, 1994, 65: 1027.
    [71] 孙鹏楠, 明付仁, 李明康, 等. 光滑粒子流体动力学方法在高压气泡动力学问题中的应用研究[C]//第三十一届全国水动力学研讨会论文集. 厦门: 海洋出版社, 2020: 985-990.SUN Pengnan, MING Furen, LI Mingkang, et al. Application of smoothed particle hydrodynamics method to high pressure bubble dynamics[C]// Proceedings of the 31st National Symposium on Hydrodynamics. Xiamen: China Ocean Press, 2020: 985-990.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

PAN Yi, LIU Yuyu, WANG Mingzhi, KUANG Cuiping, NI Xingye, SUN Pengnan. Research Progress of Smoothed Particle Hydrodynamics on Water-gas Two-phase Flow[J].同济大学学报(自然科学版),2023,51(3):385~394

Copy
Share
Article Metrics
  • Abstract:246
  • PDF: 730
  • HTML: 85
  • Cited by: 0
History
  • Received:September 14,2021
  • Online: March 29,2023
Article QR Code