Experimental Simulation of Explosive Impact Disturbance Induced Damage of Surrounding Rock Containing Structural Surfaces
CSTR:
Author:
Affiliation:

1.State Key Laboratory of Disaster Prevention & Mitigation of Explosion & Impact ,Army Engineering University of PLA,Nanjing 210007,China;2.School of Mechanical Engineering,Nanjing University of Science and Technology,Nanjing 210094,China;3.Troops 32391, Guangzhou 510000,China;4.Troops 96911, Beijing 100011,China

Clc Number:

O38

  • Article
  • | |
  • Metrics
  • |
  • Reference [28]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    In order to investigate the mechanism of the effect of ground impact disturbance generated by the blast action in the remote zone on the damage of deeply buried caverns, a similar simulation test was conducted using a ground impact effect simulation test device. A cube specimen with its side length of 1.3 m was used to simulate the entire process from ground stress loading (1 000 m burial depth), cavern excavation to blast ground impact disturbance loading. During the test, sensors were placed inside the specimen and the cavern to monitor the change of stress, strain, displacement and damage inside the cavern. Damage phenomena such as debris crumbling out, fracture connectivity leading to block crumbling out, block slip and fault activation were reproduced by applying impact disturbance loads with different peak values on top of the specimen. Ultimately, preliminary safety thresholds for deeply buried cavern chambers were obtained. The damage mechanisms of fractured, block and fault-bearing rocks under different ground impact disturbances were obtained. Tests have proven that smaller dynamic disturbances can induce damage in deeply buried cavities. Moreover, the degree of chamber damage increases with the number of impact perturbations and the peak of impact load. The test results demonstrate that ground shock disturbances in the distant area of the explosion can still induce engineering hazards.

    Reference
    [1] 钱七虎. 战略防护工程面临的核钻地弹威胁及连续介质力学模型的不适用性[J]. 防护工程, 2005, 26(5): 1.QIAN Qihu. Threat of nuclear missile faced in strategic protection works and inapplicability of continuum mechanical model[J]. Protective Engineering, 2005, 26(5): 1.
    [2] 王明洋, 李杰. 爆炸与冲击中的非线性岩石力学问题Ⅲ: 地下核爆炸诱发工程性地震效应的计算原理及应用[J]. 岩石力学与工程学报, 2019, 38(4): 695.WANG Mingyang, LI Jie. Nonlinear mechanics problems in rock explosion and shock. Part III: the calculation principle of engineering seismic effects induced by underground nuclear explosion and its application [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(4): 695.
    [3] 李夕兵, 宫凤强. 基于动静组合加载力学试验的深部开采岩石力学研究进展与展望[J]. 煤炭学报, 2021, 46(3): 846. DOI:10.13225/j.cnki.jccs.YT21.0176.LI Xibing, GONG Fengqiang. Research progress and prospect of deep mining rock mechanics based on coupled static-dynamic loading testing [J]. Journal of China Coal Society, 2021, 46(3): 846. DOI:10.13225/j.cnki.jccs.YT21.0176.
    [4] LI X B, GONG F Q, TAO M, et al.Failure mechanism and coupled static-dynamic loading theory in deep hard rock mining: a review [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2017, 9(4): 767.
    [5] FENG Xiating, YANG Chengxiang, KONG Rui, et al. Excavation-induced deep hard rock fracturing: methodology and applications[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2022, 14(1): 1.
    [6] FENG X T, XU H, QIU S L, et al. In situ observation of rock spalling in the deep tunnels of the China Jinping underground laboratory (2 400 m depth) [J]. Rock Mech Rock Eng, 2018, 51 (4): 1193.
    [7] LIU G F, FENG X T, JIANG Q, et al. In situ observation of spalling process of intact rock mass at large cavern excavation[J]. Eng Geol, 2017, 226: 52.
    [8] 何满潮, 刘冬桥, 宫伟力, 等. 冲击岩爆试验系统研发及试验 [J]. 岩石力学与工程学报, 2014, 33(9): 1729. DOI: 10.13722/j.cnki.jrme.2014.09.001.HE Manchao, LIU Dongqiao, GONG Weili, et al. Development of a testing system for impact rockbursts [J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(9): 1729. DOI: 10.13722/j.cnki.jrme.2014.09.001.
    [9] 苏国韶, 胡李华, 冯夏庭, 等. 低频周期扰动荷载与静载联合作用下岩爆过程的真三轴试验研究 [J]. 岩石力学与工程学 报, 2016, 35(7): 1309. DOI: 10.13722/j.cnki.jrme.2015.1249.SU Guoshao, HU Lihua, FENG Xiating, et al. True triaxial experimental study of rockburst process under low frequency cyclic disturbance load combined with static load [J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(7): 1309. DOI: 10.13722/j.cnki.jrme.2015.1249.
    [10] SU G S, FENG X T, WANG J H, et al. Experimental study of remotely triggered rockburst induced by a tunnel axial dynamic disturbance under true-triaxial conditions [J]. Rock Mechanics and Rock Engineering, 2017, 50(8): 2207. DOI: 10.1007/s00603-017-1218-y.
    [11] 刘岩鑫, 蒋剑青, 苏国韶, 等. 弱动力扰动对花岗岩圆形隧洞岩爆影响的试验研究[J]. 爆炸与冲击, 2020, 40(9): 88.LIU Yanxin, JIANG Jianqing, SU Guoshao, et al. Experimental study on influence of weak dynamic disturbance on rockburst of granite in a circular tunnel [J]. Explosion and Shock Waves, 2020, 40(9): 88.
    [12] 宫凤强, 张乐, 李夕兵, 等.不同预静载硬岩在动力扰动下断裂特性的试验研究[J]. 岩石力学与工程学报, 2017, 36(8): 1841. DOI:10.13722/j.cnki.jrme.2016.1439.GONG Fengqiang, ZHANG Le, LI Xibing, et al. Experimental study on fracture behaviors of hard rock under dynamic disturbance with different pre-static loads [J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(8): 1841. DOI:10.13722/j.cnki.jrme.2016.1439.
    [13] 赵光明, 刘崇岩, 许文松, 等. 扰动诱发高应力卸荷岩体破坏特征实验研究[J]. 煤炭学报, 2021, 46(2): 412. DOI:10.13225/j.cnki.jccs.xr20.1860.ZHAO Guangming, LIU Chongyan, XU Wensong, et al. Experimental study on the failure characteristics of high stress unloading rock mass induced by disturbance [J]. Journal of China Coal Society , 2021, 46(2): 412. DOI:10.13225/j.cnki.jccs.xr20.1860.
    [14] 刘闽龙, 陈士海, 石伟民, 等. 多次动态扰动下红砂岩时效变形特性研究[J]. 岩土工程学报, 2022, 44(10): 1917.LIU Minlong, CHEN Shihai, SHI Weimin, et al. Time-dependent deformation characteristics of red sandstone under multiple dynamic disturbances [J]. Chinese Journal of Geotechnical Engineering, 2022, 44(10): 1917.
    [15] 李志浩, 李杰, 王明洋, 等. 大当量爆炸地冲击毁伤效应的理论与试验研究Ⅰ:深埋洞室地冲击破坏的现场实测分析[J]. 岩石力学与工程学报, 2022, 41(5): 865.LI Zhihao, LI Jie, WANG Mingyang, et al. Theoretical and experimental study on ground impact damage effect under large equivalent explosion. Part Ⅰ:field measurement analysis of ground impact failure phenomenon of deep buried caverns [J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(5): 865.
    [16] 戚承志, 钱七虎, 王明洋, 等. 岩体的构造层次及其成因[J]. 岩石力学与工程学报, 2005, 24(16): 2838.QI Chengzhi,QIAN Qihu,WANG Mingyang, et al. Structural hierarchy of rock massif and mechanism of its formation[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(16): 2838.
    [17] 李杰, 陈伟, 施存程, 等. 基于块系构造的大规模地下爆炸不可逆位移计算方法[J]. 爆炸与冲击, 2018, 38(6): 1271.LI Jie, CHEN Wei, SHI Cuncheng, et al. Calculation method of irreversible displacement region radius based on block hierarchical structure under large-scale underground explosion [J]. Explosion and Shock Waves, 2018, 38(6): 1271.
    [18] CHARYAN G G, SPIVAK A A, BUDKOV A M. Movement of rock blocks during large-scale underground explosion. PartⅡ: estimates by analytical models, numerical calculations, and comparative analysis of theoretical and experimental data[J]. Journal of Mining Science, 2001, 37(2): 149.
    [19] 李杰, 蒋海明, 王明洋, 等. 爆炸与冲击中的非线性岩石力学问题Ⅱ:冲击扰动诱发岩块滑移的物理模拟试验[J]. 岩石力学与工程学报, 2018, 37(2): 291.LI Jie, JIANG Haiming, WANG Mingyang, et al. Nonlinear mechanical problems in rock explosion and shock. Part Ⅱ:physical model test on sliding of rock blocks triggered by external disturbance [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(2): 291.
    [20] 李利萍, 唐垒, 潘一山, 等. 应力波扰动下孔洞块体超低摩擦效应试验研究[J]. 地下空间与工程学报, 2022, 18(5): 1605.LI Liping, TANG Lei, PAN Yishan, et al. Experimental study of anomalously low friction effect of porous block under stress wave disturbance [J]. Chinese Journal of Underground Space and Engineering , 2022, 18(5): 1605.
    [21] LI Lang, WANG Mingyang, FAN Pengxian, et al. Strain rockbursts simulated by low-strength brittle equivalent materials[J]. Advances in Materials Science and Engineering, 2016, 2016: 5341904.
    [22] 范鹏贤,王明洋,邢灏喆,等. 模型试验中材料变形破坏的时间相似问题[J]. 岩石力学与工程学报,2014,33(9): 1843.FAN Pengxian, WANG Mingyang, XING Haozhe, et al. Time-dependent problems of deformation and failure in geo-mechanical model tests[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(9): 1843.
    [23] 杨嘉楠, 范鹏贤, 王德荣. 深埋岩体结构面受扰破坏失稳研究进展[J]. 防护工程, 2022, 44(5): 68.YANG Jia’nan, FAN Pengxian, WANG Derong. Review on dynamic disturbance induced failure and instability of deep-buried rock mass discontinuity[J]. Protective Engineering, 2022, 44(5): 68.
    [24] 赵德安, 陈志敏.中国地应力场分布规律统计分析[J]. 岩石力学与工程学报, 2007, 26(6): 1266.ZHAO Dean, CHEN Zhimin. Statistical analysis of distribution law of geostress field in China [J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(6): 1266.
    [25] 乔登江. 地下核爆炸现象学概论[M]. 北京: 国防工业出版社, 2002.QIAO Dengjiang. An introduction to the phenomenology of underground nuclear explosions [M]. Beijing: National Defence Industry Press, 2002.
    [26] LI Zhihao, LI Jie, FAN Pengxian, et al. Experimental investigation on engineering disaster simulation of deep buried cavern under impact load[J]. Rock Mechanics and Rock Engineering, 2022. DOI:10.1007/s00603-022-03058-5.
    [27] FAN Pengxian, YAN Zechen, WANG Mingyang, et al. Recyclable resin-based analogue material for brittle rocks and its application in geomechanical model test[J]. Arabian Journal of Geosciences, 2017, 10(1): 29.
    [28] ADUSHKIN V V, SPIVAK A. Underground explosions[M]. Lexington: Weston Geophysical Corp, 2015.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

XIONG Ziming, LI Zhihao, GAO Lei, CHENG Xiangzhen, MA Chao, CHEN Huanxin. Experimental Simulation of Explosive Impact Disturbance Induced Damage of Surrounding Rock Containing Structural Surfaces[J].同济大学学报(自然科学版),2023,51(6):827~838

Copy
Share
Article Metrics
  • Abstract:138
  • PDF: 515
  • HTML: 730
  • Cited by: 0
History
  • Received:March 06,2023
  • Online: June 28,2023
Article QR Code