Residual Static Load Bearing Capacity of Orthotropic Composite Bridge Deck After Fatigue Loading
CSTR:
Author:
Affiliation:

College of Civil Engineering, Tongji University, Shanghai 200092, China

Clc Number:

TU398

  • Article
  • | |
  • Metrics
  • |
  • Reference [31]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    The ultimate bending capacity of two full-scale steel-concrete composite bridge decks were tested to study the residual bearing capacity of the high-performance concrete composite bridge deck after fatigue loading. A full-scale static-loading test was carried out for researching the static behavior of the orthotropic composite bridge deck, including the strain of concrete and steel bars, the deformation of the structure and the development of cracks. The test results prove the failure mode of the orthotropic composite deck to be a flexural failure. When the ultimate strength on the specimen reaches, the U-rib of the middle fulcrum section is buckling, and the tensile steel bars are yielding. The concrete in the negative bending moment area is seriously cracked, and the specimen has obvious deformation. Meanwhile, a flexural failure also appears on another bridge deck specimen after fatigue loading , and the residual bearing capacity decreases by about 11.6% in comparison with the specimen without fatigue loading. Based on the bond-slip theory of reinforced concrete, a formula for calculating the average crack spacing of orthotropic composite bridge decks after fatigue loading is deduced. Compared with the test results, the proposed formula for calculating the average crack spacing has good accuracy, and the relevant research results can provide theoretical reference for practical engineering applications.

    Reference
    [1] 王春生,付炳宁,张芹,等.正交异性钢桥面板足尺疲劳试验[J].中国公路学报,2013,26(2):69.WANG Chunsheng, FU Bingning, ZHANG Qin, et al. Fatigue test on full-scale orthotropic steel bridge deck[J]. China Journal of Highway and Transport,2013,26(2):69.
    [2] 史占崇,曾明辉,邱文东,等.正交异性钢-混凝土组合桥面板纵桥向的压弯性能[J].中国公路学报,2021,34(6):80.SHI Zhanchong, ZENG Minghui, QIU Wendong, et al. Longitudinal compression-bending performance of orthotropic steel-concrete composite bridge deck[J]. China Journal of Highway and Transport,2021,34(6):80.
    [3] 张清华,卜一之,李乔.正交异性钢桥面板疲劳问题的研究进展[J].中国公路学报,2017,30(3):14.ZHANG Qinghua, BU Yizhi, LI Qiao. Review on fatigue problems of orthotropic steel bridge deck[J]. China Journal of Highway and Transport,2017,30(3):14.
    [4] 戴昌源,苏庆田.钢-混凝土组合桥面板负弯矩区裂缝宽度计算[J].同济大学学报(自然科学版),2017,45(6):806.DAI Changyuan, SU Qingtian. Crack width calculation of steel-concrete composite bridge deck in negative moment region[J]. Journal of Tongji University (Natural Science),2017,45(6):806.
    [5] 邵旭东,罗军,曹君辉,等.钢-UHPC轻型组合桥面结构试验及裂缝宽度计算研究[J].土木工程学报,2019,52(3):61.SHAO Xudong, LUO Jun, CAO Junhui, et al. Experimental study and crack width calculation of steel-uhpc lightweight composite deck structure[J]. China Civil Engineering Journal,2019,52(3):61.
    [6] 徐晨,张乐朋,江震,等.短焊钉布置对超高性能混凝土组合桥面板抗弯性能影响[J].同济大学学报(自然科学版),2021,49(8):1088.XU Chen, ZHANG Lepeng, JIANG Zhen, et al. Effects of short stud arrangement on flexural behavior of ultra-high performance concrete composite bridge decks[J]. Journal of Tongji University (Natural Science) ,2021,49(8):1088.
    [7] 贺欣怡,苏庆田,姜旭,等.环氧胶黏结刚性铺装的正交异性桥面板力学性能[J].哈尔滨工业大学学报,2020,52(9):25.HE Xinyi, SU Qingtian, JIANG Xu, et al. Mechanical properties of orthotropic steel deck with epoxy adhesively bonded rigid pavement[J]. Journal of Harbin Institute of Technology,2020,52(9):25.
    [8] 高璞,吴冲,苏庆田,等.连续宽箱组合梁桥混凝土桥面板的疲劳损伤度[J].江苏大学学报(自然科学版),2013,34(1):91.GAO Pu, WU Chong, SU Qingtian, et al. Fatigue damage of concrete slabs in wide box continuous composite bridge[J]. Journal of Jiangsu University (Natural Science Edition), 2013,34(1):91.
    [9] 刘扬,曾丹,曹磊,等.钢-UHPC组合结构桥梁研究进展[J].材料导报,2021,35(3):3104.LIU Yang, ZENG Dan, CAO Lei, et al. Advances of steel-uhpc composite bridge[J]. Materials Reports,2021,35(3):3104.
    [10] HENG J, ZHOU Z, ZOU Y, et al. GPR-assisted evaluation of probabilistic fatigue crack growth in rib-to-deck joints in orthotropic steel decks considering mixed failure models[J]. Engineering Structures, 2022, 252: 113688.
    [11] FANG H, IQBAL N, VAN STAEN G, et al. Structural optimization of rib-to-crossbeam joint in orthotropic steel decks[J]. Engineering Structures, 2021, 248: 113208.
    [12] 程斌, 田亮, 孙斌,等. 超高性能混凝土铺层提升钢桥面板疲劳性能试验研究[J]. 同济大学学报 (自然科学版), 2021, 49(8): 1097.CHENG Bin, TIAN Liang, SUN Bin, et al. Experimental study of fatigue behaviors of orthotropic steel bridge decks enhanced by the ultra-high performance concrete layer[J]. Journal of Tongji University(Natural Science) , 2021, 49(8): 1097.
    [13] 罗永传,刘红胜.铺装层温度效应对U肋与顶板构造疲劳损伤的影响[J].桥梁建设,2021,51(5):89.LUO Yongchuan, LIU Hongsheng. Influence of pavement temperature on fatigue damage of u rib-to-deck details[J]. Bridge Construction,2021,51(5):89.
    [14] 李传习,柯璐,陈卓异,等.正交异性钢桥面板弧形切口及其CFRP补强的疲劳性能[J].中国公路学报,2021,34(5):63.LI Chuanxi, KE Lu, CHEN Zhuoyi, et al. Fatigue behavior and cfrp reinforcement of diaphragm cutouts in orthotropic steel bridge decks[J]. China Civil Engineering Journal,2021,34(5):63.
    [15] 李游,李传习,陈卓异,等.基于监测数据的钢箱梁U肋细节疲劳可靠性分析[J].工程力学,2020,37(2):111.LI You, LI Chuanxi, CHEN Zhuoyi, et al. Fatigue reliability analysis of u-rib detail of steel box girder based on monitoring data[J]. Engineering Mechanics,2020,37(2):111.
    [16] 汪炳,黄侨,刘小玲.考虑多组件疲劳损伤的组合梁剩余承载力计算方法及试验验证[J].工程力学,2020,37(6):140.WANG Bing, HUANG Qiao, LIU Xiaoling. Calculation method and experimental verification of the residual strength of composite beams considering the fatigue damage of multi-components[J]. Engineering Mechanics,2020,37(6):140.
    [17] 卢朝辉,马义飞,宋力,等.重载铁路8m低高度钢筋混凝土板梁疲劳性能试验研究[J].中南大学学报(自然科学版),2017,48(9):2550.LU Zhaohui, MA Yifei, SONG Li, et al. Experimental study on fatigue behavior of 8m low-height reinforced concrete plate-girder of heavy-haul railway[J]. Journal of Central South University(Science and Technology) ,2017,48(9):2550.
    [18] 中华人民共和国住房和城乡建设部.混凝土结构设计规范: GB 50010—2010 [S]. 北京: 中国建筑工业出版社, 2015.Ministry of Housing and Urban-Rural Development of the People'S Republic of China.Code for design of concrete structures:GB 50010—2010 [S]. Beijing:China Architecture & Building Press , 2015.
    [19] RILEM TC 162-TDF. Test and design methods for steel fiber reinforced concrete: σ-ε design method: final recommendation [J]. Materials and Structures, 2003, 36(10): 560.
    [20] 原海燕. 配筋活性粉末混凝土受拉性能试验研究及理论分析[D]. 北京:北京交通大学,2009.YUAN Haiyan. Theoretical analysis and experimental research on tensile performance of reinforced reactive powder concrete[D]. Beijing: Beijing Jiaotong University,2009.
    [21] DI PRISCO M, PLIZZARI G, VANDEWALLE L. Fiber reinforced concrete: new design perspectives[J]. Materials and Structures, 2009, 42(9): 1261.
    [22] MIRZA S M, HOUDE J. Study of bond stress-slip relationships in reinforced concrete[J]. Journal Proceedings. 1979, 76(1): 19.
    [23] SOMAYAJI S, SHAH S P. Bond stress versus slip relationship and cracking response of tension members[J]. Journal Proceedings,1981, 78(3): 217.
    [24] 徐有邻,邵卓民,沈文都.钢筋与混凝土的黏结锚固强度[J].建筑科学,1988(4):8.XU Youlin, SHAO Zhuoming, SHEN Wendu. Bond strength between reinforcing bars and concrete[J]. Building Science,1988(4):8.
    [25] 章文纲,程铁生.钢纤维混凝土与钢筋黏结锚固性能的研究[J].工业建筑,1989(10):9.ZHANG Wengang, CHEN Tiesheng. Research on bonding and anchorage properties of steel fiber reinforced concrete and reinforcing bars[J]. Industrial Construction,1989(10):9.
    [26] REHM G, ELIGEHAUSEN R. Bond of ribbed bars under high cycle repeated loads[J]. ACI Journal, 1979,76(2):297.
    [27] 苏联运输工程科学研究院。苏联铁路、公路和城市桥涵设计规程: CH200-62 [S]. 北京:人民交通出版社,1984.Soviet Academy of Transportation Engineering.Technical Specifications for the design of railways, highways and urban roads in the former Soviet Union:CH200-62[S].Beijing:China Communication Press, 1984.
    [28] 姚明初. 混凝土在等幅和变幅重复力疲劳性能的研究[D]. 北京:铁道科学院, 1990.YAO Mingchu. Study on fatigue properties of concrete under constant and variable amplitude repetitive force[D]. Beijing: Railway Academy of Sciences, 1990.
    [29] KAKUTA Y O, OKAMWA M, HOHNE M. New concepts for concrete fatigue design, design procedures in Japan [M]. Proceedings Fatigue of Steel and Concrete Structures. Collpquim Lausanne: IABSE, 1982.
    [30] European Committee for Standardization. Eurocode 2: Design of concrete structures part 1-1 general rules and rules for buildings: BS EN 1992-1-1:2014[S]. London: Facsimile Publisher, 2004.
    [31] ACI Committee 215. Considerations for design of concrete structures subject fatigue loading[J]. ACI Journal, 1974, 71(3): 97.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

WU Yu, ZENG Minggen, SU Qingtian. Residual Static Load Bearing Capacity of Orthotropic Composite Bridge Deck After Fatigue Loading[J].同济大学学报(自然科学版),2023,51(10):1542~1552

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:March 21,2022
  • Online: November 01,2023
Article QR Code