Experimental Study on Energy Dissipation Capacity of Novel Dissipative Connections for CLT Structures
CSTR:
Author:
Affiliation:

1.College of Civil Engineering, Tongji University, Shanghai 200092, China;2.College of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China

Clc Number:

TU399

  • Article
  • | |
  • Metrics
  • |
  • Reference [22]
  • |
  • Related
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    Connections are essential in ensuring the seismic performance of timber structures, and the energy dissipation capacity of connections is an important index to measure the serviceability of connections for earthquakes. In this paper, the novel dissipative angle bracket and hold-down for cross-laminated timber(CLT) structures were proposed. Fifteen sets of cyclic loading tests were conducted to evaluate the failure mechanisms and mechanical properties of these connections. Almost all the tested specimens have a ductility larger than 9.0, meeting the requirements of Eurocode 8 for high ductility connections with D>6, and belonging to the high ductility class. The strength degradation of the novel dissipative connections in the working stage less than 20%, indicating the engineering applicability of the novel connections. The equivalent viscous damping ratio of the novel dissipative connections in the working stage is 12%~22%, and that of the common commercial connections is 2.5%~15.8%, indicating the high energy-consuming capacity of the novel connections.

    Reference
    [1] 肖岩, 王睿, 闻婕, 等. 正交胶合竹木(CLBT)研究进展[J]. 建筑结构学报, 2022, 43(11): 126. DOI: 10.14006/j.jzjgxb.2021.0306.XIAO Yan, WANG Rui, WEN Jie, et al. Research progress of cross-laminated timber and bamboo (CLBT)[J]. Journal of Building Structures, 2022, 43(11): 126. DOI: 10.14006/j.jzjgxb.2021.0306.
    [2] 何敏娟, 陶铎, 李征. 多高层木及木混合结构研究进展[J]. 建筑结构学报, 2016, 37(10): 1. DOI: 10.14006/j.jzjgxb.2016.10.001.HE Minjuan, TAO Duo, LI Zheng. State-of-the art of research advances on multi-story timber and timber-hybrid structures[J]. Journal of Building Structures, 2016, 37(10): 1. DOI: 10.14006/j.jzjgxb.2016.10.001.
    [3] 刘伟庆, 杨会峰. 现代木结构研究进展[J]. 建筑结构学报, 2019, 40(2): 16. DOI: 10.14006/j.jzjgxb.2019.02.002.LIU Weiqing, YANG Huifeng. Research progress on modern timber structures[J]. Journal of Building Structures, 2019, 40(2): 16. DOI: 10.14006/j.jzjgxb.2019.02.002.
    [4] WRIGHT TDW, LI M, Carradine D, et al. Cyclic behaviour of hold-downs using mixed angle self-tapping screws in douglas-fir CLT[C]//Proceedings of the 2021 New Zealand Society for earthquake engineering annual technical conference 2021. Christchurch: New Zealand Society for Earthquake Engineering, 2021: 10.
    [5] GAVRIC I, FRAGIACOMO M, CECCOTTI A. Cyclic behaviour of typical metal connectors for cross-laminated (CLT) structures. Materials and Structures[J]. Materials and Structures, 2015, 48 (6): 1841. DOI: https://doi.org/10.1617/s11527-014-0278-7.
    [6] DONG W, LI M, OTTENHAUS L M, et al. Ductility and overstrength of nailed CLT hold-down connections[J]. Engineering Structures, 2020, 215: 110667. DOI: https://doi.org/10.1016/j.engstruct.2020.110667.
    [7] 刘新虎, 黄大典. 正交胶合木墙体与楼板角钢连接节点力学性能研究[J]. 工业建筑, 2022, 52 (4): 107. DOI: 10.13204/j.gyjzG21081309.LIU Xinhu, HUANG Dadian. Research on mechanical properties of clt wall-to-floor joints with angle bracket[J]. Industrial Construction, 2022, 52 (4): 107. DOI: 10.13204/j.gyjzG21081309.
    [8] FRANCO B, VICTOR R, O-V ALEXANDER , et al. Experimental and numerical evaluation of hold-down connections on radiata pine cross-laminated-timber shear walls: a case study in Chile[J]. European Journal of Wood and Wood Products, 2019, 77(3): 79. DOI: https://doi.org/10.1007/s00107-018-1365-1.
    [9] 沈银澜, 牟在根, JOHANNES S, et al. 交叉层积木数值模拟研究以及连接损伤分析[J]. 工程科学学报, 2016, 38 (1): 149. DOI: 10.13374/j.issn2095-9389.2016.01.020.SHEN Yinlan, MOU Zaigen, JOHANNES S, et al. Numerical simulation study and damage analysis of cross laminated timber connections[J]. Chinese Journal of Engineering, 2016, 38(1): 149. DOI: 10.13374/j.issn2095-9389.2016.01.020.
    [10] POZZA L, FERRACUTI B, MASSARI M, et al. Axial - shear interaction on CLT hold-down connections - experimental investigation[J]. Engineering Structures, 2018, 160: 95. DOI: https://doi.org/10.1016/j.engstruct.2018.01.021.
    [11] ROBERTO T, IAN S. Experimental characterization of monotonic and cyclic loading responses of CLT panel-to-foundation angle bracket connections[J]. Journal of Materials in Civil Engineering, 2014, 27(6): 04014189. DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0001144.
    [12] VAN DE LINDT J W, FURLEY J, AMINI M O, et al. Experimental seismic behavior of a two-story CLT platform building[J]. Engineering Structures, 2019, 183: 408. DOI: https://doi.org/10.1016/j.engstruct.2018.12.079.
    [13] VIKTOR H, BRUNO D, MARTA S, et al. Full-scale shaking-table tests of Xlam panel systems and numerical verification: specimen 1[J]. Journal of Structural Engineering, 2013, 139(1):2010. DOI: https://doi.org/10.1061/(ASCE)ST.1943-541X.0000754.
    [14] MOTOI Y, KENJI K, MINORU O, et al. Full-scale tests and numerical analysis of low-rise CLT structures under lateral loading[J]. Journal of Structural Engineering, 2016, 142(4): E4015007. DOI: https://doi.org/10.1061/(ASCE)ST.1943-541X.0001348.
    [15] ARIO C, CARMEN S, MINORU O, et al. SOFIE project – 3D shaking table test on a seven‐storey full‐scale cross‐laminated timber building[J]. Earthquake Engineering & Structural Dynamic, 2013, 42: 2003. DOI: https://doi.org/10.1002/eqe.2309.
    [16] 钟淼麟, 李静, 强智森, 等. 紧固件数量对CLT钢木连接节点性能的影响[J]. 林产工业, 2021, 58 (10): 18. DOI: 10.19531/j.issn1001-5299.202110004.ZHONG Miaolin, LI Jing, QIANG Zhisen, et al. The influence of the number of fasteners on the properties of clt steel-to-timber connections[J]. China Forest Products Industry, 2021, 58(10): 18. DOI: 10.19531/j.issn1001-5299.202110004.
    [17] 贾苑, 乔菁, 张佳男, 等. CLT墙体-楼板T型连接件节点力学性能研究[J]. 北京林业大学学报, 2018, 40 (10): 123. DOI: 10.13332/j.1000-1522.20180243.JIA Yuan, QIAO Jing, ZHANG Jianan, et al. Mechanical performance of CLT wall-to-floor joints with T connector[J]. Journal of Beijing Forestry University, 2018, 40 (10): 123. DOI: 10.13332/j.1000-1522.20180243.
    [18] D’ARENZO G, RINALDIN G, FOSSETTI M, et al. An innovative shear-tension angle bracket for cross-laminated timber structures: Experimental tests and numerical modelling[J]. Engineering Structures, 2019, 197: 109434. DOI: https://doi.org/10.1016/j.engstruct.2019.109434.
    [19] D’ARENZO G, SEIM W, FOSSETTI M. Experimental characterization of a biaxial behaviour connector for CLT wall-to-floor connections under different load directions[J]. Construction and Building Materials, 2021, 295: 123666. DOI: https://doi.org/10.1016/j.conbuildmat.2021.123666.
    [20] SCOTTA R, MARCHI L, TRUTALLI D, et al. A dissipative connector for CLT buildings: concept, design and testing[J]. Materials, 2016, 9(3): 139. DOI: https://doi.org/10.3390/ma9030139.
    [21] MARCHI L, TRUTALLI D, SCOTTA R, et al. Macro-element modelling of a dissipative connection for CLT structures[J]. Structures, 2020, 26: 582. DOI: https://doi.org/10.1016/j.istruc.2020.04.044.
    [22] LATOUR M, RIZZANO G. Cyclic behavior and modeling of a dissipative connector for cross-laminated timber panel buildings[J]. Journal of Earthquake Engineering, 2015, 19(1): 137. DOI: https://doi.org/10.1080/13632469.2014.948645.
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

XIONG Haibei, WU Zhe, CHEN Jiawei. Experimental Study on Energy Dissipation Capacity of Novel Dissipative Connections for CLT Structures[J].同济大学学报(自然科学版),2024,52(5):684~696

Copy
Share
Article Metrics
  • Abstract:103
  • PDF: 291
  • HTML: 834
  • Cited by: 0
History
  • Received:January 23,2024
  • Online: May 24,2024
Article QR Code