Effects of Model Parameters on Spray Characteristics of Gasoline Direct-Injection Engines
CSTR:
Author:
Affiliation:

School of Automotive Studies,Tongji Unversity,Shanghai 201804,China

Clc Number:

TK411

  • Article
  • | |
  • Metrics
  • |
  • Reference [24]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    This paper investigates the effects of turbulence model parameter, one-way coupling model parameter, and break-up model parameters on spray penetration and droplet size based on the VOF-spray one-way coupling model. The results indicate that the RANS constant Cε1 and the RT model size constant CRT have the greatest effect on the spray penetration, and size constants CKH and CRT have the greatest effect on the droplet size. Based on the above analysis, it establishes a high precision spray model for different working conditions. The error between experiment and simulation is within 3% for standard Spray G condition, and around 10% error for different ambient gas densities.

    Reference
    [1] 马文华. 我国汽车保有量4.08亿辆[EB/OL]. (2022-08-12) [2022-11-16]. http://www.gov.cn/xinwen/2022-08/12/content_5705101.htm.MA Wenhua. China has 408 million vehicles[EB/OL]. (2022-08-12)[2022-11-16]. http://www.gov.cn/xinwen/2022-08/12/content_5705101.htm.
    [2] ASHFAQ M, BUTT O, SELVARAJ J, et al. Assessment of electric vehicle charging infrastructure and its impact on the electric grid: a review[J]. International Journal of Green Energy, 2021, 18(7): 657.
    [3] LI T, MOON S, SATO K, et al. A comprehensive study on the factors affecting near-nozzle spray dynamics of multi-hole GDI injectors[J]. Fuel, 2017, 190: 292.
    [4] 曹天义. 柴油机喷嘴内空化形态特性及对系统压力波动和喷雾的影响研究[D]. 镇江: 江苏大学, 2021.CAO Tianyi. The study on cavitating pattern characteristics and their effects on pressure fluctuations and spray in the diesel nozzle[D]. Zhenjiang: Jiangsu University, 2021.
    [5] 李治龙, 吴志军, 高原, 等. 基于同步辐射高能X射线的喷油器喷嘴内部几何结构及尺寸的测量[J].吉林大学学报(工学版), 2011, 41(1): 128.LI Zhilong, WU Zhijun, GAO Yuan, et al. Measurement method for diesel nozzle internal geometry and size using high-energy synchrotron radiation X-ray[J]. Journal of Jilin University (Engineering and Technology), 2011, 41(1): 128.
    [6] MOON S, KOMADA K, LI Z, et al. High-speed X-ray imaging of in-nozzle cavitation and emerging jet flow of multi-hole GDI injector under practical operating conditions[C]//Proceedings of ICLASS 2015. Tainan: Nstitute for Liquid Atomization and Spray Systems-A, 2015: 1-8.
    [7] 高雅. 基于同步辐射X射线的高压燃油射流液核破碎特性测量及内在机理研究[D]. 上海: 同济大学, 2021.GAO Ya. Liquid-jet breakup characteristics and mechanism analysis in high-pressure gasoline nozzles using synchrotron X-ray techniques[D]. Shanghai: Tongji University, 2021.
    [8] WU Z, ZHAO W, LI Z, et al. A review of engine fuel injection studies using synchrotron radiation x-ray imaging[J]. Automotive Innovation, 2019, 2(2): 79.
    [9] PRATAMA R H, HUANG W, MOON S, et al. Hydraulic flip in a gasoline direct injection injector and its effect on injected spray[J]. Fuel, 2022, 310: 122303.
    [10] 王梓森. 闪急沸腾喷雾特性及燃烧和排放影响的仿真研究[D]. 长春: 吉林大学, 2022.WANG Zisen. Simulation study of flash boiling spray characteristics and combustion and emission effects[D]. Changchun: Jilin University. 2022.
    [11] 张威龙. 喷孔内气穴生成及喷雾近场耦合特性数值研究[D]. 大连: 大连理工大学, 2020.ZHANG Weilong. Numerical study on the characteristics of in-nozzle cavitation formation coupling the near-field spray[D]. Dalian: Dalian University of Technology, 2020.
    [12] ZHAO W, LI Z, DENG J, et al. Experimental and numerical study on the effects of nozzle geometry features on the nozzle internal flow and cavitation characteristics[J]. Atomization and Sprays, 2021, 31(6): 67.
    [13] PANDAL B A. Implementation and development of an Eulerian spray model for CFD simulations of diesel sprays[D]. València: Universitat Politècnica de València, 2016.
    [14] SAHA K, QUAN S, BATTISTONI M, et al. Coupled Eulerian internal nozzle flow and Lagrangian spray simulations for GDI systems[R]. Detroit: SAE, 2017.
    [15] MOHAN B, BADRA J, SIM J, et al. Coupled in-nozzle flow and spray simulation of engine combustion network spray-G injector[J]. International Journal of Engine Research, 2021, 22(9): 2982.
    [16] PAREDI D, LUCCHINI T, D’ERRICO G, et al. Validation of a comprehensive computational fluid dynamics methodology to predict the direct injection process of gasoline sprays using Spray G experimental data[J]. International Journal of Engine Research, 2020, 21(1): 199.
    [17] SHIELDS B, NEROORKAR K, SCHMIDT D P . Cavitation as rapid flash boiling[C]//ILASS Americas. 23rd Annual Conference on Liquid Atomization and Spray Systems. Ventura: Institute for Liquid Atomization and Spray Systems-North and South America, 2011: 110-117.
    [18] Pickett L, Mesh and geometry-engine combustion network[EB/OL]. (2014-04-05)[2022-11-08]. https://ecn.sandia.gov/data/melbourne-spray-g-data/.
    [19] POWELL C. Measured needle motion (x-ray phase contrast) [EB/OL]. [2022-11-16]. https://view.officeapps.live.com/op/view.aspx?src=https%3A%2F%2Fecn.sandia.gov%2FG%2Fdata%2FneedleLift%2FSprayG28_Xray_Needle_Lift.xlsx&wdOrigin=BROWSELINK.
    [20] PARRISH S. Rate of injection (tube method)[EB/OL]. [2022-11-16]. https://ecn.sandia.gov/gasoline-spray-combustion/target-condition/primary-spray-g-datasets/.
    [21] GARCIA-OLIVER J M, PASTOR J M, PANDAL A, et al. Diesel spray CFD simulations based on the Σ-γ Eulerian atomization model[J]. Atomization and Sprays, 2013, 23(1):71.
    [22] PAREDI.Melbourne Spray G data- engine combustion network[EB/OL]. [2022-11-16]. https://ecn.sandia.gov/data/melbourne-spray-g-data/.
    [23] PARRISH S. Drop size and velocity at z = 15 mm[EB/OL]. [2022-11-16]. https://ecn.sandia.gov/gasoline-spray-combustion/target-condition/primary-spray-g-datasets/.
    [24] PAYRI R, SALVADOR F J, MARTí-ALDARAVí P, et al. ECN spray G external spray visualization and spray collapse description through penetration and morphology analysis[J]. Applied Thermal Engineering, 2017, 112: 304.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

LENG Pengfei, HU Chaoqun, YANG Chunyu, RUAN Huilin, ZHAO Wenbo, YU Yang, LI Liguang, WU Zhijun. Effects of Model Parameters on Spray Characteristics of Gasoline Direct-Injection Engines[J].同济大学学报(自然科学版),2024,52(9):1456~1463

Copy
Share
Article Metrics
  • Abstract:47
  • PDF: 428
  • HTML: 750
  • Cited by: 0
History
  • Received:November 24,2022
  • Online: September 27,2024
Article QR Code