网刊加载中。。。

使用Chrome浏览器效果最佳,继续浏览,你可能不会看到最佳的展示效果,

确定继续浏览么?

复制成功,请在其他浏览器进行阅读

环境介质中十溴二苯乙烷和1,2-双(2,4,6-三溴苯氧基)乙烷分布特征的研究进展  PDF

  • 王森 1,2
  • 张兆祥 1,2
1.西北大学 城市与环境学院,陕西 西安 710127; 2.西北大学 陕西省地表过程与环境承载力重点实验室,陕西 西安 710127

中图分类号: X131

最近更新:2020-03-27

DOI:10.11908/j.issn.0253-374x.19351

  • 全文
  • 图表
  • 参考文献
  • 作者
  • 出版信息
目录contents

摘要

十溴二苯乙烷(DBDPE)和1,2‒双(2,4,6‒三溴苯氧基)乙烷(BTBPE)作为新型溴系阻燃剂,因具有亲脂性和持久性而易于在环境介质中累积。总结了DBDPE和BTBPE在生物和非生物环境介质中的分布特征。DBDPE和BTBPE易与固相紧密结合,土壤、污泥和粉尘中的浓度远高于其他环境介质中。DBDPE和BTBPE在生物中的分布与生物种类、器官组织等有一定关系,并且在人体母乳、血液和头发中也有检出。商业化DBDPE和BTBPE的生产和使用以及电子垃圾拆解活动是DBDPE和BTBPE在环境中的主要来源。未来需对DBDPE和BTBPE在不同环境介质中的迁移转化行为、生物效应的分子机制进一步展开研究。

溴代阻燃剂(BFRs)是全世界应用最广泛的阻燃剂,被添加于电子电气设备、建筑材料和塑料制品等产品[1‒2]。以多溴联苯醚(PBDEs)为代表的传统BFRs由于难降解性、生物毒性和生物累积[

3],逐步被美国、欧盟、中国等相继淘[4‒5],而替代传统BFRs的新型溴代阻燃剂(NBFRs)被大量使用。其中,十溴二苯乙烷(DBDPE)和1,2‒双(2,4, 6‒三溴苯氧基)乙烷(BTBPE)分别是PBDEs中十溴联苯醚(deca‒BDEs)和八溴联苯醚(octa‒BDEs)的替代品,而且DBDPE也是目前全球使用量较大的NBFRs[6]

DBDPE与BTBPE都属于添加型阻燃剂,与添加载体间没有化学键束缚,而且在室温下有较低的蒸汽[

6],因此很容易释放到环境中。目前DBDPE和BTBPE已在大气、水体、沉积物、土壤以及生物体中检[6‒19]。DBDPE于2004年首次在瑞典的污泥、室内空气以及荷兰的沉积物等环境介质中检[7],而早在20世纪70年代,BTBPE在其生产工厂(美国阿肯色州Great Lakes公司)附近的河流沉积物中有较高检出(466 μg·kg-1[8]。近年来,在青藏高原、北极等偏远地区的大气中也检出DBDPE和BTBPE[16‒17],并且在部分地区DBDPE含量高于十溴联苯醚(BDE‒209[1,15]。因为DBDPE和BTBPE具有较高的辛醇‒水分配系数(log Kow)和分子量,可能难以被生物利[9‒10],然而有研究证实它们可以进入生物体内并沿食物链放[11‒13],同时在人体母乳和头发中也有一定程度的检[18‒19]

由于DBDPE和BTBPE具有持久性、生物累积性、毒性和长距离迁移性,因此受到越来越多的关注。总结了近些年来DBDPE和BTBPE在国内外大气、水体、污泥、土壤、植物、动物和人体等多种环境介质中的分布特征,并对今后的研究方向做了展望,为DBDPE和BTBPE的控制及管理提供科学依据。

1 DBDPE和BTBPE的理化性质及生产应用

DBDPE是一种添加型BFRs,化学结构(见图1a)与BDE‒209相似,被广泛应用于高聚物合成材料、塑料、电器、建材、树脂等领域,具有优良的热稳定性(见表1[

20]。DBDPE的阻燃效果接近于甚至优于BDE‒209[21],已成为deca‒BDEs最理想的替代品。中国是商业化DBDPE的主要生产国,2006年―2012年的产量约占全球总产量的50%[22],并且以每年80%的速率持续增[6]

图1 DBDPE及BTBPE的结构式

Fig. 1 Structural formulas of DBDPE and BTBPE

表1 DBDPE和BTBPE的物理化学特[6]
Tab. 1 Physicochemical properties of DBDPE and BTBPE[6]
参数DBDPEBTBPE
分子式 C14H4Br10 C14H8Br6O2
分子量 971.2 687.6
蒸汽压(25 ℃)/Pa 6.00×10-15 3.88×10-10
溶解度(25 ℃)/(g·L-1) 2.10×10-7 1.90×10-5
log Kow 11.10 7.88±0.86

BTBPE是一种具有低挥发性、良好热稳定性和耐光性的添加型BFRs(见表1[

23],主要用于电子电器和玩具等产品[24],从2005年起被大量生产以替代被禁用的octa‒BDEs[25]。我国目前也有生产和使用BTBPE,随着传统BFRs的淘汰,BTBPE的市场需求也会不断增[26]

2 DBDPE和BTBPE在非生物环境介质中的分布特征

2.1 大气中DBDPE和BTBPE的分布特征

DBDPE和BTBPE作为添加型BFRs,室温下具有较低的蒸汽压,很容易在生产、使用和处理过程中进入大气,在世界各地大气中都有不同程度检出,甚至在一些偏远地区也有发[16‒17,27]。因具有较高的log Kow,DBDPE和BTBPE在大气中易与颗粒物紧密结合,在大气颗粒物中的浓度要远高于气[28‒30]。Li[

30]的研究发现,在中国9个城市的大气中,DBDPE在大气颗粒物中的平均质量浓度(63.5 pg·m-3)远高于在气相中(5.32 pg·m-3)。在美国中东部和加拿大多伦多地区也仅在大气颗粒物中检测到BTBPE[31‒32]

就全球而言,美国五大湖的偏远地区大气中DBDPE质量浓度(0.34~0.50 pg·m-3[

17]远低于全球其他地区,而中国广州大气中DBDPE质量浓度(平均值为1 916.00 pg·m-3)远高于其他国家和地区(瑞典和东非(质量浓度平均值分别为1.40、7.23 pg·m-3[14,33‒34],并且远高于国内其他城市(哈尔滨、北京和昆明(质量浓度平均值分别为11.00、55.40、3.90 pg·m-3[28,30]。广州高度发达的汽车制造业和电子电器产业及其周边的电子垃圾拆解活动可能是浓度较高的主要原[14,30,35‒37]。BTBPE也在包括偏远地区的世界各地大气中检出,其中北极(质量浓度中位值为0.044 pg·m-3)低于青藏高原纳木错湖地区(质量浓度中位值为0.220 pg·m-3)和美国五大湖偏远地区(质量浓度中位值为0.310 pg·m-3[16‒17,27],美国阿肯色州农村地区(质量浓度平均值为3.40 pg·m-3)与中国南方农村地区水平相当(质量浓度平均值为2.97 pg·m‒3[29,31]。电子垃圾拆解活动同样也是大气中BTBPE的主要来源,如中国广东清远电子垃圾拆解地PM2.5的BTBPE质量浓度(平均值为34.20 pg·m‒3)是广州市区(平均值为1.64 pg·m‒3)的20倍左[38]。整体来说,BTBPE在大气中的浓度普遍低于DBDPE[14,17,30],这可能是由于BTBPE全球使用量低于DBDPE[6,25]

室内粉尘可能是人体吸入和皮肤摄入BFRs的主要途[39‒40]。其中,DBDPE是室内粉尘中最丰富且常见的NBFRs[40‒41]。如澳大利亚墨尔本地区的室内粉尘中,DBDPE含量(中位值为1 800 ng·g-1)要比其他NBFRs(五溴甲苯(PBT)、2,3,4,5,6‒五溴乙苯(PBEB)、六溴苯(HBB)和2‒乙基己基‒四溴苯甲酸(EH‒TBB))高出2~3个数量[

42]。广州室内粉尘中DBDPE含量(中位值为4 600.0 ng·g-1)处于较高水[39],比欧洲(捷克、比利时和德国(中位值分别为140.8、153.0、146.0 ng·g-1))和北美(美国和加拿大(中位值分别为148.0、15.0 ng·g-1))要高出1~2个数量[2,24,43‒45]。室内粉尘中DBDPE主要来自各类电器的使[46‒47],因此拥有较多电器的办公室中DBDPE含量通常大于居家环[24,48]。BTBPE在室内灰尘中也能检测到,但低于DBDPE[44‒45],如中国、英国、比利时和美国室内粉尘中BTBPE的含量都比DBDPE低1个数量级左[24,40,48‒49]。不同国家室内粉尘中BTBPE的含量差异显著。加拿大(中位值为12.0 ng·g-1)与英国(中位值为11.2 ng·g-1)和巴基斯坦(中位值为15.0 ng·g-1)相[45,50‒51],高于比利时(中位值为2.0 ng·g-1)和捷克(中位值为3.9 ng·g-1[24,45],低于美国(中位值为30 .0 ng·g-1)和挪威(中位值为42.0 ng·g-1[49,52]

2.2 水体和沉积物中DBDPE和BTBPE的分布特征

大气中的DBDPE和BTBPE主要通过干湿沉降迁移到水体和土壤等环境介质中,土壤中的DBDPE和BTBPE也可以通过地表径流进入水体。同时,由于DBDPE和BTBPE具有较高的log Kow和有机碳‒水分配系数(log Koc),因此对水体中的悬浮颗粒物和沉积物具有较高的亲和[

53]。研究表明,总有机碳含量(TOC)和沉积物粒径可能是影响沉积物中BFRs分布的重要因素,因此DBDPE等BFRs很容易吸附在粒径较小且TOC较高的沉积物[1]

目前关于水体中DBDPE和BTBPE的研究较少,主要集中在中国、新加坡和加拿[11,53‒54]。如中国山东莱州湾地区的DBDPE质量浓度(0.310~107.000 ng·L-1)远高于其他地[

11,54],主要由于该地区是中国最大的BFRs生产[55]。由于BTBPE产量较低,因此在水体中的浓度远低于DBDPE。新加坡城市流域水体中BTBPE的质量浓度(0.040~5.220 ng·L-1)远高于新加坡沿海流域(Nd~62.000 pg·L-1Nd为检测限)以及中国渤海流域(0.030~0.150 ng·L-1)和加拿大温尼伯湖流域(Nd~2.690 pg·L-1[11,53,56‒57]。此外,水相中DBDPE和BTBPE的浓度远低于包含悬浮颗粒相的水体以及沉积[12,54‒55]。如在广东东江水体中,DBDPE含量呈现为溶解相(13~38 pg·L-1<颗粒相(37~110 ng·g-1 干重)≪沉积物(Nd~1 700 ng·g-1 干重[12],在山东莱州湾地区也仅在颗粒相中检测到了BTBPE[55]

由于DBDPE和BTBPE的强疏水性,因此一旦进入水体中,其主要分布相是沉积物。近年来随着DBDPE的广泛生产和使用,DBDPE已成为沉积物中主要的BFRs之[55,58‒59],并且许多研究表明DBDPE在沉积物中的含量已高于BDE‒209[1,58‒60]。如在中国黄海和东海沉积物中,DBDPE含量(Nd~

9 460.0 pg·g-1 干重)比BDE‒209(1.1~924.0 pg·g-1 干重)高1个数量[

1]。就全球而言,DBDPE在北美五大湖、智利、北冰洋、中国河北白洋淀、长三角等地区的水平相近(Nd~5.29 ng·g-1 干重[59‒63],而西班牙、中国黄海和福建九龙江口红树林(Nd~39.70 ng·g-1 干重)则比前者高1~2个数量[58,64‒65]。污染最为严重的是中国珠江三角洲的东江河(Nd~1 728.00 ng·g-1 干重[66],这是由于东江河流的沿岸城市东莞是中国主要电子产品生产[67]。BTBPE在沉积物中的含量通常低于DBDPE(见表2)。如在越南以及中国莱州湾、珠江三角洲、黄河中下游地区的DBDPE含量(Nd~1 728.00 ng·g-1 干重)均高于BTBPE(Nd~73.40 ng·g-1 干重[55,66,68‒69]。中国珠江三角洲大堰河流域中BTBPE的含66]高于新加坡城市流域、北美五大湖地区以及荷[53,61,70],这主要是由于大堰河下游靠近电子垃圾拆解地。

表2 DBDPE和BTBPE在沉积物和污泥中的分布
Tab. 2 Distribution of DBDPE and BTBPE in sediments and sludge
种类国家或地区采样时间含量/(ng·g-1 干重)文献
DBDPE (中位值)BTBPE (中位值)
沉积物 新加坡 2014年―2015年 1.73~4.46 [53]
智利 2009年―2010年 Nd~2.26 [60]
荷兰 2005年 0.65~9.80 Nd~0.31 [70]
西班牙伊比利亚地区 2010年 Nd~31.50 [64]
北美五大湖地区 2007年 0.11~2.80 0.13~8.30 [61]
越南北部地区 Nd~20.00(3.10) Nd~5.70(0.89) [68]
中国黄河中下游 2014年 0.04~18.70 0.01~0.20 [69]
中国福建九龙江口地区 2013年 5.10~32.00 0.03~0.25 [65]
中国山东莱州湾地区 2014年 3.52~218.00(39.50) Nd~3.05(0.01) [55]
中国珠江三角洲地区 2009年―2010年 Nd~1 728.00 Nd~73.4 [66]
污水处理厂污泥 中国广州地区 2007年 266.00~1 995.00 0.31~1.66 [14]
中国哈尔滨地区 2012年―2013年 33.86~607.32 0.77~156.60 [76]
韩国 2011年 Nd~3 100.00 Nd~21.00 [72]
美国 1999年―2000年 1.4~160.00 [75]
加拿大 2004年 Nd~65.00 [75]
瑞典斯德哥尔摩地区 2006年―2007年 66.00~95.00 [77]

2.3 污泥中DBDPE和BTBPE的分布特征

污水处理厂污泥中DBDPE和BTBPE是最常检测到的NBFRs,检出率要高于PBT、PBEB和HBB等NBFRs[14,36,71‒74]。其中,DBDPE检出率最高,浓度最高。如Ricklund[

75]从12个国家收集的44个污泥样本中有42个检测到DBDPE,而且在2017年广州污水处理厂污泥中DBDPE与BDE‒209的比值已超过1[15]。中国广州某污水处理厂污泥中DBDPE的含量(675.40~27 438.60 ng·g-1 干重)比全国62个污水处理厂高出近100倍(0.82~215.00 ng·g-1 干重)。东部地区污泥中DBDPE含量要高于中西部地区,这可能是由于电子电器产业、汽车制造业主要分布在东部地[15,35‒36]。韩国污泥中DBDPE的含量高于西班牙(Nd~257.0 ng·g-1 干重)、瑞士(73.0~160.0 ng·g-1 干重)、德国(Nd~220.0 ng·g-1 干重)、美国(1.4~160.0 ng·g-1 干重)和捷克共和国(6.0~140.0 ng·g-1 干重),而新西兰(5.1~31.0 ng·g-1 干重)、澳大利亚(7.7~31.0 ng·g-1 干重)和挪威(1.9~6.3 ng·g-1 干重)等国家则处于相对较低的污染水[71‒72,74‒75]。对于BTBPE,中国(平均值为0.95 ng·g-1 干重)与韩国(平均值为1.57 ng·g-1 干重)和挪威(平均值为1.27 ng·g-1 干重)水平相[36,72,74],但比美国(平均值为10.10 ng·g-1 干重)和中国哈尔滨地区(平均值为15.62 ng·g-1 干重)要低1个数量[73,76]

2.4 土壤中DBDPE和BTBPE的分布特征

土壤是持久性有机污染物最主要的汇,目前在多个国家和地区的土壤中检出DBDPE和BTBPE,并且DBDPE是土壤中最主要的NBFRs[78‒79]。广东贵屿非电子垃圾拆解区域土壤中检出的DBDPE含量(0.53~0.57 ng·g-1 干重)与广东某稻田的(0.88~1.00 ng·g-1 干重)较为相[80‒81],但低于越南北部稻田(Nd~2.9 ng·g-1 干重)和广州郊区农田(17.6~35.8 ng·g-1 干重[

14,82]。工业活动和电子垃圾拆解活动是土壤中DBDPE的主要污染物来源。在印尼苏腊巴亚地区,乡村(Nd~3.400 ng·g-1 干重)和农田土壤(0.058~0.160 ng·g-1 干重)中的DBDPE含量要低于城市(0.650~7.600 ng·g-1 干重)和工业区(Nd~4.300 ng·g-1 干重[83];中国华北地区土壤中山东省DBDPE含量最高(0.06~

1 612.00 ng·g-1 干重),京津地区次之(0.03~173.00 ng·g-1 干重)。这可能是因为山东省是中国DBDPE的主要生产地,天津的电子垃圾拆解活动是京津地区DBDPE的重要来[

6,84]。澳大利亚墨尔本电子垃圾拆解地DBDPE的含量(Nd~37 000 ng·g-1 干重)也远高于世界其他国家和地[85]

BTBPE在土壤中也有一定检出,并且在电子垃圾拆解地的含量(0.09~4 150.00 ng·g-1 干重)要远高于农田、森林和非电子垃圾拆解区域的土壤(Nd~0.91 ng·g-1 干重[14,68,78‒83]。越南北部电子垃圾拆解地土壤有BTBPE检出,含量为0.51~350.00 ng·g-1 干重,但在该地区农田土壤中未检[

68]。在巴基斯坦和澳大利亚墨尔本电子垃圾拆解地土壤的NBFRs中,BTBPE的含量仅次于DBDPE[78,85]

3 DBDPE和BTBPE在生物体中的分布特征

3.1 植物中DBDPE和BTBPE的分布特征

植物主要从土壤和大气中吸收有机污染物。对于土壤吸收,污染物先溶解到土壤间隙水、被植物根系吸收,再向上传输至植物的其他部[

86];对于大气吸收,主要是大气中的污染物被吸附到树叶或树皮表[87‒88]。树皮具有较高的脂质含量和较大的表面积,是大气有机污染物重要的指示[89]。目前DBDPE和BTBPE主要在针叶林(松树、冷杉和云杉等)的树皮和叶片以及落叶林的叶片中检[88‒93]。DBDPE含量在加拿大、捷克共和国和美国芝加哥地区的树皮中水平相近(平均值分别为6.63、3.92、5.70 ng·g-1 脂重[89‒90],但低于中国主要电子产品制造地深圳(1 034.5 ng·g-1 脂重[91]。DBDPE与BTBPE在美国东北部树皮中含量的平均值(8.5、3.2 ng·g-1 脂重)远远低于美国阿肯色州(100.0、24.0 ng·g-1 脂重),这是因为阿肯色州有DBDPE和BTBPE的生产[91‒92]。落叶和针叶林的叶中DBDPE的含量要比BTBPE高大概1~2个数量[88,93]。此外,谷物、蔬菜、水果等食物中也检测出了少量DBDPE(平均值为120.0 pg·g-1 湿重)与BTBPE(Nd~21.8 pg·g-1 湿重[94‒95]

3.2 动物中DBDPE和BTBPE的分布特征

由于DBDPE和BTBPE具有高亲脂性,在陆生和水生动物体内均能检测到其存在(见表3[13,96‒102],它们的差异性分布与生存环境、器官组织、动物种类、营养级和生活习性有[

14,96,99]。中国广东清远池塘中鱼体内的DBDPE和BTBPE(440.00~

表3 DBDPE和BTBPE在动物体内的分布
Tab. 3 Distribution of DBDPE and BTBPE in animals
国家或地区种类组织采样时间含量/(ng·g-1 脂重)文献
DBDPEBTBPE
中国太湖地区

黄鳝、团头鲂、银鱼、鲫鱼、

鲤鱼、鲶鱼等

肌肉 2014年―2015年 Nd~64.80 5.70(平均值) [13]
加拿大温尼伯湖地区 大眼蓝鲈、白鲑、翠闪岁、江鳕、白亚口鱼、鲱鱼 肌肉 2000年―2002年 Nd~1.01 0.13~0.95 [11]
拉脱维亚共和国 鳗鱼 肌肉 2013年―2014年 Nd~33.00 Nd [102]
格陵兰岛地区 黑海鸠 鸟蛋 2012年 Nd~0.96 0.13~0.18 [101]
北极鸥 肝脏 2012年 Nd Nd~0.67 [101]
海豹 鲸脂 2012年 Nd~0.33 Nd~0.23 [101]
北极熊 脂肪 2012年 Nd Nd~0.33 [101]
中国广东清远电子垃圾回收地 母鸡 鸡蛋 2010年 5.97~37.90 37.20~264.00 [109]
美国五大湖地区 银鸥 鸟蛋 1982年―2006年 Nd~3 310.30 Nd~4.00 [104]
中国广东清远电子垃圾拆解地(1) 水鸟 肌肉 2005年―2007年 Nd~3.30 [111]
中国广东清远电子垃圾拆解地(2) 水鸟 肌肉 2005年―2007年 10.00~180.00 [113]
中国广东鼎湖山国家级自然保护区 普通翠鸟 肌肉 2010年 0.44~90.00 0.04~0.87 [114]

1 000.00、1.71~518.00 ng·g-1 脂重)都远高于加拿大流域(Nd~1.01、0.13~0.95 ng·g-1 脂重[

11,96,100]。由于该池塘底泥中含有较高的DBDPE,鱼类、虾和水蛇DBDPE的含量比两栖生物(青蛙和蟾蜍)高1~2个数量[96,100]。在格陵兰岛,DBDPE和BTBPE在鲸脂、脂肪组织中的含量明显高于蛋和肝[101]

目前陆生动物中DBDPE和BTBPE的研究主要集中在鸟类。蛋的高脂肪含量使其可能积累大量的有机污染物,因此被认为是环境中持久性有机污染物污染水平的良好指示[

103]。来自美国五大湖、北极、瑞典Faroe岛以及加拿大和西班牙等国家和地区的鸟蛋中DBDPE和BTBPE的含量分别为Nd~

3 310.30 ng·g-1Nd~19.20 ng·g-1 (脂重[104‒107],其中美国五大湖地区DBDPE的含量最高。在中国,北方黄河流域鸟蛋中DBDPE的含量为Nd~1.70 ng·g-1 (脂重),低于广东清远电子垃圾拆解地鸡蛋(5.97~37.90 ng·g-1 脂重[108‒109]。在广东清远电子垃圾拆解地鸟类肌肉中DBDPE和BTBPE的含量(10.0~180.0和Nd~7.7 ng·g-1 脂重)高于广东鼎湖山和石门台国家级自然保护区(11.0~25.0和0.1~0.3 ng·g-1 脂重),并且DBDPE的含量要高于BTBPE[97,110‒114]。然而,韩国普通鵟体内BTBPE含量平均值(431.00 ng·g-1 脂重)要比DBDPE(10.10 ng·g-1 脂重)高1个数量级左右,其他鸟类体内DBDPE(11.20~80.60 ng·g-1 脂重)远高于BTBPE(Nd~2.65 ng·g-1 脂重),这可能与鸟类的捕食习性和迁徙模式有[

99]。除了鸟类外,中国动物园的大熊猫和小熊猫也被检出DBDPE[115]。巴基斯坦室内环境的宠物猫和狗的毛发和血清中均检测出一定量的BTBPE[98]。此外,由于有机污染物在动物不同组织中代谢和累积模式的不同,使其存在组织分布差异性。如DBDPE与BTBPE在广东清远电子垃圾拆解地鸟类肝脏(13.70~54.60、0.27~2.41 ng·g-1 脂重)和肾脏(24.50~124.00、0.12~0.89 ng·g-1 脂重)的含量比肌肉(9.60~16.30、0.07~0.39 ng·g-1 脂重)[14]

研究表明,DBDPE和BTBPE在水生食物链具有一定的生物放大作用。如加拿大温尼伯湖地区水生食物链中DBDPE的营养放大系数(TMF)值为8.60[

11],太湖水生食物链中BTBPE的TMF值为2.83[13]。研究亦发现,DBDPE与BTBPE在陆地食物链中具有生物放大效应。如广东肇庆地区DBDPE的浓度与氮同位素(δ15N)显著正相[110],BTBPE在普通翠鸟的捕食关系中生物放大因子(BMF)值也都大于1(1.1~3.6[112,114]。也有研究发现,DBDPE和BTBPE在水生食物链中BMF值分别为0.06和0.40,这也表明它们具有营养级稀释效[116]

3.3 人体中DBDPE和BTBPE的分布特征

关于人体内DBDPE和BTBPE的分布,主要以母乳、血液和头发为研究对象。研究发现,中国母乳中DBDPE含量(2.45~21.80 ng·g-1 脂重)与加拿大(Nd~25.00 ng·g-1 脂重)相似,都高于新西兰(15.85~325.50 pg·g-1 脂重[117‒119]。对BTBPE而言,在加拿大、坦桑尼亚和爱尔兰母乳中均未检[118,120‒121],但在中国许多地区有检出,但含量较低(Nd~0.922 ng·g-1 脂重[

117]。血液中DBDPE的分布与人群所处区域环境状况及从事的职业有关。如与拆解地普通居民(4.2~127.2 ng·g-1 脂重)和城镇居民(Nd~33.2 ng·g-1 脂重)相比,电子垃圾拆解工人血清中DBDPE含量(26.7~439.5 ng·g-1 脂重)显著升[122]。加拿大哺乳期妇女血清中BTBPE含量(Nd~16.00 ng·g-1 脂重)与巴基斯坦妇女和儿童较为接近(Nd~8.20 ng·g-1 脂重[118,123]。头发脂质含量高(2 %~4 %),可以通过外部环境和血液循环吸收污染[124]。浙江温岭电子垃圾拆解地工人头发中DBDPE含量(平均值为82.50 ng·g-1 干重)分别是该电子垃圾拆解地普通居民(平均值为29.40 ng·g-1 干重)和城镇居民(平均值为10.90 ng·g-1 干重)的3倍和8[122],也远高于广州中山大学(中位值为3.56 ng·g-1 干重)和广东农村居民(中位值为9.57 ng·g-1 干重[125‒126]。BTBPE也呈现相似趋势,广东电子垃圾拆解工人(中位值为1.21 ng·g-1 干重)、电子垃圾拆解地普通居民(中位值为0.60 ng·g-1 干重)和广州城市居民(中位值为0.10 ng·g-1 干重)头发中的含量逐渐增加,这表明DBDPE和BTBPE在人体头发中的含量与其在环境中的污染水平有很大的关[126]

4 结论与展望

近年来,随着PBDEs的禁用,DBDPE和BTBPE等NBFRs开始被广泛生产并使用,在世界各地乃至北极、青藏高原等偏远地区的不同环境介质中被陆续检出,尤其是DBDPE浓度呈不断上升趋势,在某些区域甚至超过deca‒BDEs。电子垃圾拆解活动、商业化DBDPE和BTBPE的生产和使用是环境中DBDPE和BTBPE的主要来源。因此,DBDPE和BTBPE在不同区域的分布大致表现为:电子垃圾拆解地要高于非电子垃圾拆解地,城市及工业区高于农村地区,拥有较多电器的办公室高于居家环境。由于DBDPE和BTBPE具有较高的

log Kow,易与固相结合,在大气颗粒物、室内粉尘、沉积物、污泥和土壤中的浓度高于大气气相和水体溶解相等介质。对于生物介质,植物主要以树皮和叶片为主,动物主要集中在鱼类和鸟类,人体则通过血液、母乳及头发来研究DBDPE和BTBPE分布特征,在生物介质中的分布与生物种属、组织、营养级、生存环境和生活习性等有一定关系。总的来说,BTBPE在非生物环境介质中的浓度都明显低于DBDPE,也有研究发现在部分动物体内BTBPE的浓度高于DBDPE。

由于DBDPE和BTBPE的生物富集作用和毒性,因此未来仍需对其在不同生物介质中的分布特征展开研究,尤其食物链中的生物放大作用也值得格外关注。其次,需重点关注DBDPE和BTBPE在环境介质中的迁移转化行为,尤其是在生物体内的迁移转化过程及机制。最后,需加强DBDPE和BTBPE的生物效应及机制研究,从基因组学、转录组学、蛋白质组学及代谢组学对机理开展深入研究。这对评价DBDPE和BTBPE的生态风险和对人类潜在的健康危害都具有重要意义。电子垃圾拆解活动以及生产和使用DBDPE和BTBPE的企业是目前的主要污染源,因此要从污染源头来减少向环境中的排放,通过先进的处理工艺有效去除“三废”中DBDPE和BTBPE来尽量减少对生态环境和人类健康的影响。

参考文献

1

LI Y N, ZHEN X M, LIU L, et al. Halogenated flame retardants in the sediments of the Chinese Yellow Sea and East China Sea[J]. Chemosphere, 2019, 234: 365. [百度学术

2

KALACHOVA K, HRADKOVA P, LANKOVA D, et al. Occurrence of brominated flame retardants in household and car dust from the Czech Republic[J]. Science of the Total Environment, 2012, 441: 182. [百度学术

3

LAW R J, COVACI A, HARRAD S, et al. Levels and trends of PBDEs and HBCDs in the global environment: status at the end of 2012[J]. Environment International, 2014, 65: 147. [百度学术

4

BESIS A, SAMARA C. Polybrominated diphenyl ethers (PBDEs) in the indoor and outdoor environments:a review on occurrence and human exposure[J]. Environment Pollution, 2012, 169: 217. [百度学术

5

赵静, 徐挺, 白建峰. 多溴联苯醚暴露的神经行为效应及其毒理机制[J]. 生态毒理学报, 2017, 12(1): 52. [百度学术

ZHAO Jing, XU Ting, BAI Jianfeng. The neurobehavioral toxicity induced by polybrominated diphenyl ethers exposure and the underlying mechanisms[J]. Asian Journal of Ecotoxicology, 2017, 12(1): 52. [百度学术

6

COVACI A, HARRAD S, ABDALLAH M A E, et al. Novel brominated flame retardants: a review of their analysis, environmental fate and behaviour[J]. Environment International, 2011, 37(2): 532. [百度学术

7

KIERKEGAARD A, BJÖRKLUND J, FRIDÉN U. Identification of the flame retardant decabromodiphenyl ethane in the environment[J]. Environmental Science & Technology, 2004, 38(12): 3247. [百度学术

8

吕苏蓉. 北京市居民总膳食中新型溴代阻燃剂暴露水平研究[D]. 北京: 北京化工大学, 2016. [百度学术

LÜ Surong. Total dietary exposure assessment of emerging brominated flame retardants in Beijing[D]. Beijing: Beijing University of Chemical Technology, 2016. [百度学术

9

HARDY M L, MARGITICH D, ACKERMAN L, et al. The subchronic oral toxicity of ethane, 1,2-bis(pentabromophenyl) (Saytex 8010) in rats[J]. International Journal of Toxicology, 2002, 21(3): 165. [百度学术

10

YANG Z Y, GREENSTEIN D, ZENG E Y, et al. Determination of poly(dimethyl)siloxane-water partition coefficients for selected hydrophobic organic chemicals using 14C-labeled analogs[J]. Journal of Chromatography A, 2007, 1148(1): 23. [百度学术

11

LAW K, HALLDORSON T, DANELL R, et al. Bioaccumulation and trophic transfer of some brominated flame retardants in a Lake Winnipeg (Canada) food web[J]. Environmental Toxicology and Chemistry, 2006, 25(8): 2177. [百度学术

12

HE M J, LUO X J, CHEN M Y, et al. Bioaccumulation of polybrominated diphenyl ethers and decabromodiphenyl ethane in fish from a river system in a highly industrialized area, South China[J]. Science of the Total Environment, 2012, 419: 109. [百度学术

13

ZHENG G M, WAN Y, SHI S N, et al. Trophodynamics of emerging brominated flame retardants in the aquatic food web of Lake Taihu: relationship with organism metabolism across trophic levels[J]. Environmental Science & Technology, 2018, 52(8): 4632. [百度学术

14

SHI T, CHEN S J, LUO X J, et al. Occurrence of brominated flame retardants other than polybrominated diphenyl ethers in environmental and biota samples from southern China[J]. Chemosphere, 2009, 74(7): 910. [百度学术

15

WU Q H, LI H Y, KUO D T F, et al. Occurrence of PBDEs and alternative halogenated flame retardants in sewage sludge from the industrial city of Guangzhou, China[J]. Environment Pollution, 2017, 220: 63. [百度学术

16

XIAO H, SHEN L, SU Y S, et al. Atmospheric concentrations of halogenated flame retardants at two remote locations: the Canadian High Arctic and the Tibetan Plateau[J]. Environment Pollution, 2012, 161: 154. [百度学术

17

LIU L Y, SALAMOVA A, VENIER M, et al. Trends in the levels of halogenated flame retardants in the Great Lakes atmosphere over the period 2005―2013[J]. Environment International, 2016, 92/93: 442. [百度学术

18

CHEN T, HUANG M R, LI J, et al. Polybrominated diphenyl ethers and novel brominated flame retardants in human milk from the general population in Beijing, China: occurrence, temporal trends, nursing infants’ exposure and risk assessment[J]. Science of the Total Environment, 2019, 689: 278. [百度学术

19

唐量. 多溴联苯醚及十溴二苯乙烷在上海市典型环境介质中的分布及生态风险评估[D]. 上海: 上海大学, 2012. [百度学术

TANG Liang. Preliminary studies on polybrominated diphenyl ethers and decabromodiphenyl ethane in various typical environmental matrices of Shanghai[D]. Shanghai: Shanghai University, 2012. [百度学术

20

汝绍刚. 国内十溴二苯乙烷的研究进展[J]. 山东化工, 2006, 35(3): 16. [百度学术

RU Shaogang. Advances in studies of decabromodiphenylethane at home[J]. Shandong Chemical Industry, 2006, 35(3): 16. [百度学术

21

宋飞, 徐晓楠, 李响. 十溴二苯乙烷阻燃ABS燃烧性能评价[J]. 火灾科学, 2006, 15(4): 251. [百度学术

SONG Fei, XU Xiaonan, LI Xiang. Assessment of combustion performances of decabromodiphenyl ethane flame retardant ABS[J]. Fire Safety Science, 2006, 15(4): 251. [百度学术

22

SHEN K H, LI L, LIU J Z, et al. Stocks, flows and emissions of DBDPE in China and its international distribution through products and waste[J]. Environment Pollution, 2019, 250: 79. [百度学术

23

赵怡凡. 华北地区大气中溴代阻燃剂类污染物的空间分布及来源研究[D]. 北京: 北京大学, 2013. [百度学术

ZHAO Yifan. Spatial distribution and source apportionment of polybrominated flame retardants in the atmosphere of North China[D]. Beijing: Peking University, 2013. [百度学术

24

ALI N, HARRAD S, GOOSEY E, et al. “Novel” brominated flame retardants in Belgian and UK indoor dust: implications for human exposure[J]. Chemosphere, 2011, 83(10): 1360. [百度学术

25

HOH E, ZHU L Y, HITES R A. Novel flame retardants, 1,2-bis(2,4,6-tribromophenoxy)ethane and 2,3,4,5,6-pentabromoethylbenzene, in United States’ environmental samples[J]. Environmental Science & Technology, 2005, 39(8): 2472. [百度学术

26

蔡永源. 现代阻燃技术手册[M]. 北京: 化学工业出版社, 2008. [百度学术

CAI Yongyuan. Handbook of modern technology of flame retardarce[M]. Beijing: Chemical Industry Press, 2008. [百度学术

27

YU Y, HUNG H, ALEXANDROU N, et al. Multiyear measurements of flame retardants and organochlorine pesticides in air in Canada’s Western sub-Arctic[J]. Environmental Science & Technology, 2015, 49(14): 8623. [百度学术

28

QI H, LI W L, LIU L Y, et al. Brominated flame retardants in the urban atmosphere of Northeast China: concentrations, temperature dependence and gas-particle partitioning[J]. Science of the Total Environment, 2014, 491/492: 60. [百度学术

29

TIAN M, CHEN S J, WANG J, et al. Brominated flame retardants in the atmosphere of e-waste and rural sites in southern China: seasonal variation, temperature dependence, and gas-particle partitioning[J]. Environmental Science & Technology, 2011, 45(20): 8819. [百度学术

30

LI Q L, YANG K, LI K C, et al. New halogenated flame retardants in the atmosphere of nine urban areas in China: pollution characteristics, source analysis and variation trends[J]. Environment Pollution, 2017, 224: 679. [百度学术

31

HOH E, HITES R A. Brominated flame retardants in the atmosphere of the east-central United States[J]. Environmental Science & Technology, 2005, 39(20): 7794. [百度学术

32

SHOEIB M, AHRENS L, JANTUNEN L, et al. Concentrations in air of organobromine, organochlorine and organophosphate flame retardants in Toronto, Canada[J]. Atmospheric Environment, 2014, 99: 140. [百度学术

33

EGEBÄCK A L, SELLSTRÖM U, MCLACHLAN M S. Decabromodiphenyl ethane and decabromodiphenyl ether in Swedish background air[J]. Chemosphere, 2012, 86(3): 264. [百度学术

34

ARINAITWE K, MUIR D C G, KIREMIRE B T, et al. Polybrominated diphenyl ethers and alternative flame retardants in air and precipitation samples from the northern Lake Victoria region, East Africa[J]. Environmental Science & Technology, 2014, 48(3): 1458. [百度学术

35

张文品. 广州市汽车产业发展战略与政策研究[D]. 广州: 华南理工大学, 2013. [百度学术

ZHANG Wenpin. Development strategies and countermeasures of automobile industry in Guangzhou[D]. Guangzhou: South China University of Technology, 2013. [百度学术

36

ZENG L X, YANG R Q, ZHANG Q H, et al. Current levels and composition profiles of emerging halogenated flame retardants and dehalogenated products in sewage sludge from municipal wastewater treatment plants in China[J]. Environmental Science & Technology, 2014, 48(21): 12586. [百度学术

37

LIU D, LIN T, SHEN K J, et al. Occurrence and concentrations of halogenated flame retardants in the atmospheric fine particles in Chinese cities[J]. Environmental Science & Technology, 2016, 50(18): 9846. [百度学术

38

DING N, CHEN S J, WANG T, et al. Halogenated flame retardants (HFRs) and water-soluble ions (WSIs) in fine particulate matter (PM2.5) in three regions of South China[J]. Environment Pollution, 2018, 238: 823. [百度学术

39

TANG S Q, TAN H L, LIU X T, et al. Legacy and alternative flame retardants in house dust and hand wipes from South China[J]. Science of the Total Environment, 2019, 656: 1. [百度学术

40

NIU D, QIU Y L, DU X Y, et al. Novel brominated flame retardants in house dust from Shanghai, China: levels, temporal variation, and human exposure[J]. Environmental Sciences Europe, 2019, 31: 6. [百度学术

41

CRISTALE J, BELÉ T G A, LACORTE S, et al. Occurrence and human exposure to brominated and organophosphorus flame retardants via indoor dust in a Brazilian city[J]. Environment Pollution, 2018, 237: 695. [百度学术

42

MCGRATH T J, MORRISON P D, BALL A S, et al. Concentrations of legacy and novel brominated flame retardants in indoor dust in Melbourne, Australia: an assessment of human exposure[J]. Environment International, 2018, 113: 191. [百度学术

43

FROMME H, HILGER B, KOPP E, et al. Polybrominated diphenyl ethers (PBDEs), hexabromocyclododecane (HBCD) and “novel” brominated flame retardants in house dust in Germany[J]. Environment International, 2014, 64: 61. [百度学术

44

FROMME H, BECHER G, HILGER B, et al. Brominated flame retardants: exposure and risk assessment for the general population[J]. International Journal of Hygiene and Environmental Health, 2016, 219(1): 1. [百度学术

45

VENIER M, AUDY O, VOJTA Š , et al. Brominated flame retardants in the indoor environment: comparative study of indoor contamination from three countries[J]. Environment International, 2016, 94: 150. [百度学术

46

CHEN S J, MA Y J, WANG J, et al. Measurement and human exposure assessment of brominated flame retardants in household products from South China[J]. Journal of Hazardous Materials, 2010, 176(1/2/3): 979. [百度学术

47

KAJIWARA N, NOMA Y, TAKIGAMI H. Brominated and organophosphate flame retardants in selected consumer products on the Japanese market in 2008[J]. Journal of Hazardous Materials, 2011, 192(3): 1250. [百度学术

48

PENG C F, TAN H L, GUO Y, et al. Emerging and legacy flame retardants in indoor dust from East China[J]. Chemosphere, 2017, 186: 635. [百度学术

49

STAPLETON H M, ALLEN J G, KELLY S M, et al. Alternate and new brominated flame retardants detected in U.S. house dust[J]. Environmental Science & Technology, 2008, 42(18): 6910. [百度学术

50

AL-OMRAN L S, HARRAD S. Influence of sampling approach on concentrations of legacy and “novel” brominated flame retardants in indoor dust[J]. Chemosphere, 2017, 178: 51. [百度学术

51

ALI N, ALI L, MEHDI T, et al. Levels and profiles of organochlorines and flame retardants in car and house dust from Kuwait and Pakistan: implication for human exposure via dust ingestion[J]. Environment International, 2013, 55: 62. [百度学术

52

TAY J H, SELLSTRÖM U, PAPADOPOULOU E, et al. Human exposure to legacy and emerging halogenated flame retardants via inhalation and dust ingestion in a Norwegian cohort[J]. Environmental Science & Technology, 2017, 51(14): 8176. [百度学术

53

WANG Q, KELLY B C. Occurrence and distribution of halogenated flame retardants in an urban watershed: comparison to polychlorinated biphenyls and organochlorine pesticides[J]. Environment Pollution, 2017, 231: 252. [百度学术

54

何明靖, 李琦, 赵佳渊, . 卤系阻燃剂在东江工业水体中的质量浓度及其分配特征[J]. 环境科学, 2016, 37(7): 2539. [百度学术

HE Mingjing, LI Qi, ZHAO Jiayuan, et al. Concentrations and partitioning of halogenated flame retardants in industrial water of Dongjiang River[J]. Environmental Science, 2016, 37(7): 2539. [百度学术

55

ZHEN X M, TANG J H, LIU L, et al. From headwaters to estuary: distribution and fate of halogenated flame retardants (HFRs) in a river basin near the largest HFR manufacturing base in China[J]. Science of the Total Environment, 2018, 621: 1370. [百度学术

56

WANG Y, WU X W, ZHAO H X, et al. Characterization of PBDEs and novel brominated flame retardants in seawater near a coastal mariculture area of the Bohai Sea, China[J]. Science of the Total Environment, 2017, 580: 1446. [百度学术

57

ZHANG H, BAYEN S, KELLY B C. Multi-residue analysis of legacy POPs and emerging organic contaminants in Singapore’s coastal waters using gas chromatography-triple quadrupole tandem mass spectrometry[J]. Science of the Total Environment, 2015, 523: 219. [百度学术

58

ZHEN X M, TANG J H, XIE Z Y, et al. Polybrominated diphenyl ethers (PBDEs) and alternative brominated flame retardants (aBFRs) in sediments from four bays of the Yellow Sea, North China[J]. Environment Pollution, 2016, 213: 386. [百度学术

59

ZHU B Q, LAM J C W, YANG S Y, et al. Conventional and emerging halogenated flame retardants (HFRs) in sediment of Yangtze River Delta (YRD) region, East China[J]. Chemosphere, 2013, 93(3): 555. [百度学术

60

BARÓN E, GAGO-FERRERO P, GORGA M, et al. Occurrence of hydrophobic organic pollutants (BFRs and UV-filters) in sediments from South America[J]. Chemosphere, 2013, 92(3): 309. [百度学术

61

YANG R Q, WEI H, GUO J H, et al. Emerging brominated flame retardants in the sediment of the Great Lakes[J]. Environmental Science & Technology, 2012, 46(6): 3119. [百度学术

62

CAI M G, HONG Q Q, WANG Y, et al. Distribution of polybrominated diphenyl ethers and decabromodiphenylethane in surface sediments from the Bering Sea, Chukchi Sea, and Canada Basin[J]. Deep Sea Research, Part Ⅱ: Topical Studies in Oceanography, 2012, 81/82/83/84: 95. [百度学术

63

HU G C, XU Z C, DAI J Y, et al. Distribution of polybrominated diphenyl ethers and decabromodiphenylethane in surface sediments from Fuhe River and Baiyangdian Lake, North China[J]. Journal of Environmental Sciences, 2010, 22(12): 1833. [百度学术

64

BARÓN E, SANTÍN G, ELJARRAT E, et al. Occurrence of classic and emerging halogenated flame retardants in sediment and sludge from Ebro and Llobregat river basins (Spain)[J]. Journal of Hazardous Materials, 2014, 265: 288. [百度学术

65

ZHANG Z W, PEI N C, SUN Y X, et al. Halogenated organic pollutants in sediments and organisms from mangrove wetlands of the Jiulong River Estuary, South China[J]. Environmental Research, 2019, 171: 145. [百度学术

66

CHEN S J, FENG A H, HE M J, et al. Current levels and composition profiles of PBDEs and alternative flame retardants in surface sediments from the Pearl River Delta, southern China: comparison with historical data[J]. Science of the Total Environment, 2013, 444: 205. [百度学术

67

ZHANG Z W, SUN Y X, SUN K F, et al. Brominated flame retardants in mangrove sediments of the Pearl River Estuary, South China: spatial distribution, temporal trend and mass inventory[J]. Chemosphere, 2015, 123: 26. [百度学术

68

SOMEYA M, SUZUKI G, IONAS A C, et al. Occurrence of emerging flame retardants from e-waste recycling activities in the northern part of Vietnam[J]. Emerging Contaminants, 2016, 2(2): 58. [百度学术

69

SU X F, LI Q L, FENG J L, et al. Legacy and emerging halogenated flame retardants in the middle and lower stream of the Yellow River[J]. Science of the Total Environment, 2017, 601/602: 1619. [百度学术

70

LÓPEZ P, BRANDSMA S A, LEONARDS P E G, et al. Optimization and development of analytical methods for the determination of new brominated flame retardants and polybrominated diphenyl ethers in sediments and suspended particulate matter[J]. Analytical and Bioanalytical Chemistry, 2011, 400(3): 871. [百度学术

71

GORGA M, MARTÍNEZ E, GINEBREDA A, et al. Determination of PBDEs, HBB, PBEB, DBDPE, HBCD, TBBPA and related compounds in sewage sludge from Catalonia (Spain)[J]. Science of the Total Environment, 2013, 444: 51. [百度学术

72

LEE S, SONG G J, KANNAN K, et al. Occurrence of PBDEs and other alternative brominated flame retardants in sludge from wastewater treatment plants in Korea[J]. Science of the Total Environment, 2014, 470/471: 1422. [百度学术

73

DAVIS E F, KLOSTERHAUS S L, STAPLETON H M. Measurement of flame retardants and triclosan in municipal sewage sludge and biosolids[J]. Environment International, 2012, 40: 1. [百度学术

74

NYHOLM J R, GRABIC R, ARP H P H, et al. Environmental occurrence of emerging and legacy brominated flame retardants near suspected sources in Norway[J]. Science of the Total Environment, 2013, 443: 307. [百度学术

75

RICKLUND N, KIERKEGAARD A, MCLACHLAN M S. An international survey of decabromodiphenyl ethane (deBDethane) and decabromodiphenyl ether (decaBDE) in sewage sludge samples[J]. Chemosphere, 2008, 73(11): 1799. [百度学术

76

LI B, SUN S J, HUO C Y, et al. Occurrence and fate of PBDEs and novel brominated flame retardants in a wastewater treatment plant in Harbin, China[J]. Environmental Science and Pollution Research, 2016, 23(19): 19246. [百度学术

77

RICKLUND N, KIERKEGAARD A, MCLACHLAN M S, et al. Mass balance of decabromodiphenyl ethane and decabromodiphenyl ether in a WWTP[J]. Chemosphere, 2009, 74(3): 389. [百度学术

78

IQBAL M, SYED J H, BREIVIK K, et al. E-waste driven pollution in Pakistan: the first evidence of environmental and human exposure to flame retardants (FRs) in Karachi city[J]. Environmental Science & Technology, 2017, 51(23): 13895. [百度学术

79

ZHENG Q, NIZZETTO L, LI J, et al. Spatial distribution of old and emerging flame retardants in Chinese forest soils: sources, trends and processes[J]. Environmental Science & Technology, 2015, 49(5): 2904. [百度学术

80

XU P J, TAO B, ZHOU Z G, et al. Occurrence, composition, source, and regional distribution of halogenated flame retardants and polybrominated dibenzo-p-dioxin/dibenzofuran in the soils of Guiyu, China[J]. Environment Pollution, 2017, 228: 61. [百度学术

81

ZHANG Y, LUO X J, MO L, et al. Bioaccumulation and translocation of polyhalogenated compounds in rice (Oryza sativa L.) planted in paddy soil collected from an electronic waste recycling site, South China[J]. Chemosphere, 2015, 137: 25. [百度学术

82

MATSUKAMI H, SUZUKI G, SOMEYA M, et al. Concentrations of polybrominated diphenyl ethers and alternative flame retardants in surface soils and river sediments from an electronic waste-processing area in northern Vietnam, 2012―2014[J]. Chemosphere, 2017, 167: 291. [百度学术

83

ILYAS M, SUDARYANTO A, SETIAWAN I E, et al. Characterization of polychlorinated biphenyls and brominated flame retardants in sediments from riverine and coastal waters of Surabaya, Indonesia[J]. Marine Pollution Bulletin, 2011, 62(1): 89. [百度学术

84

LIN Y, MA J, QIU X H, et al. Levels, spatial distribution, and exposure risks of decabromodiphenylethane in soils of North China[J]. Environmental Science and Pollution Research, 2015, 22(17): 13319. [百度学术

85

MCGRATH T J, MORRISON P D, BALL A S, et al. Spatial distribution of novel and legacy brominated flame retardants in soils surrounding two Australian electronic waste recycling facilities[J]. Environmental Science & Technology, 2018, 52(15): 8194. [百度学术

86

COLLINS C, FRYER M, GROSSO A. Plant uptake of non-ionic organic chemicals[J]. Environmental Science & Technology, 2006, 40(1): 45. [百度学术

87

DESBOROUGH J, HARRAD S. Chiral signatures show volatilization from soil contributes to polychlorinated biphenyls in grass[J]. Environmental Science & Technology, 2011, 45(17): 7354. [百度学术

88

TIAN M, CHEN S J, WANG J, et al. Plant uptake of atmospheric brominated flame retardants at an e-waste site in southern China[J]. Environmental Science & Technology, 2012, 46(5): 2708. [百度学术

89

SALAMOVA A, HITES R A. Brominated and chlorinated flame retardants in tree bark from around the globe[J]. Environmental Science & Technology, 2013, 47(1): 349. [百度学术

90

SALAMOVA A, HITES R A. Evaluation of tree bark as a passive atmospheric sampler for flame retardants, PCBs, and organochlorine pesticides[J]. Environmental Science & Technology, 2010, 44(16): 6196. [百度学术

91

QIU X H, HITES R A. Dechlorane plus and other flame retardants in tree bark from the northeastern United States[J]. Environmental Science & Technology, 2008, 42(1): 31. [百度学术

92

ZHU L Y, HITES R A. Brominated flame retardants in tree bark from North America[J]. Environmental Science & Technology, 2006, 40(12): 3711. [百度学术

93

DREYER A, NEUGEBAUER F, RÜDEL H, et al. Halogenated flame retardants in tree samples applied as bioindicators for atmospheric pollution[J]. Chemosphere, 2018, 208: 233. [百度学术

94

LI P, WU H, LI Q X, et al. Brominated flame retardants in food and environmental samples from a production area in China: concentrations and human exposure assessment[J]. Environmental Monitoring and Assessment, 2015, 187: 719. [百度学术

95

吕苏蓉, 牛宇敏, 张晶, . 北京市居民膳食中新型溴代阻燃剂暴露水平研究[J]. 卫生研究, 2016, 45(3): 425. [百度学术

LÜ Surong, NIU Yumin, ZHANG Jing, et al. Total dietary exposure assessment of emerging brominated flame retardants in Beijing[J]. Journal of Hygiene Research, 2016, 45(3): 425. [百度学术

96

LIU Y, LUO X J, HUANG L Q, et al. Halogenated organic pollutants in aquatic, amphibious, and terrestrial organisms from an e-waste site: habitat-dependent accumulation and maternal transfer in watersnake[J]. Environment Pollution, 2018, 241: 1063. [百度学术

97

PENG Y, WU J P, TAO L, et al. Contaminants of legacy and emerging concern in terrestrial passerines from a nature reserve in South China: residue levels and inter-species differences in the accumulation[J]. Environment Pollution, 2015, 203: 7. [百度学术

98

ALI N, MALIK R N, MEHDI T, et al. Organohalogenated contaminants (OHCs) in the serum and hair of pet cats and dogs: biosentinels of indoor pollution[J]. Science of the Total Environment, 2013, 449: 29. [百度学术

99

JIN X, LEE S, JEONG Y, et al. Species-specific accumulation of polybrominated diphenyl ethers (PBDEs) and other emerging flame retardants in several species of birds from Korea[J]. Environment Pollution, 2016, 219: 191. [百度学术

100

WU J P, GUAN Y T, ZHANG Y, et al. Trophodynamics of hexabromocyclododecanes and several other non-PBDE brominated flame retardants in a freshwater food web[J]. Environmental Science & Technology, 2010, 44(14): 5490. [百度学术

101

VORKAMP K, BOSSI R, RIGÉT F F, et al. Novel brominated flame retardants and dechlorane plus in Greenland air and biota[J]. Environment Pollution, 2015, 196: 284. [百度学术

102

ZACS D, IKKERE L E, BARTKEVICS V. Emerging brominated flame retardants and dechlorane-related compounds in European eels (Anguilla anguilla) from Latvian lakes[J]. Chemosphere, 2018, 197: 680. [百度学术

103

WINDAL I, HANOT V, MARCHI J, et al. PCB and organochlorine pesticides in home-produced eggs in Belgium[J]. Science of the Total Environment, 2009, 407(15): 4430. [百度学术

104

GAUTHIER L T, POTTER D, HEBERT C E, et al. Temporal trends and spatial distribution of non-polybrominated diphenyl ether flame retardants in the eggs of colonial populations of Great Lakes herring gulls[J]. Environmental Science & Technology, 2009, 43(2): 312. [百度学术

105

VERREAULT J, GEBBINK W A, GAUTHIER L T, et al. Brominated flame retardants in glaucous gulls from the Norwegian Arctic: more than just an issue of polybrominated diphenyl ethers[J]. Environmental Science & Technology, 2007, 41(14): 4925. [百度学术

106

KARLSSON M, ERICSON I, BAVEL B V, et al. Levels of brominated flame retardants in Northern Fulmar (Fulmarus glacialis) eggs from the Faroe Islands[J]. Science of the Total Environment, 2006, 367(2/3): 840. [百度学术

107

GUERRA P, ALAEE M, JIMÉNEZ B, et al. Emerging and historical brominated flame retardants in peregrine falcon (Falco peregrinus) eggs from Canada and Spain[J]. Environment International, 2012, 40: 179. [百度学术

108

GAO F, LUO X J, YANG Z F, et al. Brominated flame retardants, polychlorinated biphenyls, and organochlorine pesticides in bird eggs from the Yellow River Delta, North China[J]. Environmental Science & Technology, 2009, 43(18): 6956. [百度学术

109

ZHENG X B, WU J P, LUO X J, et al. Halogenated flame retardants in home-produced eggs from an electronic waste recycling region in South China: levels, composition profiles, and human dietary exposure assessment[J]. Environment International, 2012, 45: 122. [百度学术

110

SUN Y X, LUO X J, MO L, et al. Brominated flame retardants in three terrestrial passerine birds from South China: geographical pattern and implication for potential sources[J]. Environment Pollution, 2012, 162: 381. [百度学术

111

ZHANG X L, LUO X J, LIU H Y, et al. Bioaccumulation of several brominated flame retardants and dechlorane plus in waterbirds from an e-waste recycling region in South China: associated with trophic level and diet sources[J]. Environmental Science & Technology, 2011, 45(2): 400. [百度学术

112

MO L, WU J P, LUO X J, et al. Bioaccumulation of polybrominated diphenyl ethers, decabromodiphenyl ethane, and 1,2-bis(2,4,6-tribromophenoxy) ethane flame retardants in kingfishers (Alcedo atthis) from an electronic waste-recycling site in South China[J]. Environmental Toxicology and Chemistry, 2012, 31(9): 2153. [百度学术

113

LUO X J, ZHANG X L, LIU J, et al. Persistent halogenated compounds in waterbirds from an e-waste recycling region in South China[J]. Environmental Science & Technology, 2009, 43(2): 306. [百度学术

114

MO L, WU J P, LUO X J, et al. Using the kingfisher (Alcedo atthis) as a bioindicator of PCBs and PBDEs in the Dinghushan Biosphere Reserve, China[J]. Environmental Toxicology and Chemistry, 2013, 32(7): 1655. [百度学术

115

HU G C, LUO X J, DAI J Y, et al. Brominated flame retardants, polychlorinated biphenyls, and organochlorine pesticides in captive giant panda (Ailuropoda melanoleuca) and red panda (Ailurus fulgens) from China[J]. Environmental Science & Technology, 2008, 42(13): 4704. [百度学术

116

TAO L, ZHANG Y, WU J P, et al. Biomagnification of PBDEs and alternative brominated flame retardants in a predatory fish: using fatty acid signature as a primer[J]. Environment International, 2019, 127: 226. [百度学术

117

SHI Z X, ZHANG L, LI J G, et al. Novel brominated flame retardants in food composites and human milk from the Chinese Total Diet Study in 2011: concentrations and a dietary exposure assessment[J]. Environment International, 2016, 96: 82. [百度学术

118

ZHOU S N, BUCHAR A, SIDDIQUE S, et al. Measurements of selected brominated flame retardants in nursing women: implications for human exposure[J]. Environmental Science & Technology, 2014, 48(15): 8873. [百度学术

119

MANNETJE A, COAKLEY J, BRIDGEN P, et al. Current [百度学术